
Perl version 5.10.0 documentation - perlapi

Page 1http://perldoc.perl.org

NAME
perlapi - autogenerated documentation for the perl public API

DESCRIPTION
This file contains the documentation of the perl public API generated by
 embed.pl, specifically a listing
of functions, macros, flags, and variables
 that may be used by extension writers. The interfaces of any
functions that
 are not listed here are subject to change without notice. For this reason,
 blindly using
functions listed in proto.h is to be avoided when writing
 extensions.

Note that all Perl API global variables must be referenced with the PL_
 prefix. Some macros are
provided for compatibility with the older,
 unadorned names, but this support may be disabled in a
future release.

The listing is alphabetical, case insensitive.

"Gimme" Values
GIMME

A backward-compatible version of GIMME_V which can only return G_SCALAR or
G_ARRAY; in a void context, it returns G_SCALAR.
 Deprecated. Use GIMME_V instead.

	 U32	 GIMME

GIMME_V

The XSUB-writer's equivalent to Perl's wantarray. Returns G_VOID, G_SCALAR or
G_ARRAY for void, scalar or list context,
 respectively.

	 U32	 GIMME_V

G_ARRAY

Used to indicate list context. See GIMME_V, GIMME and perlcall.

G_DISCARD

Indicates that arguments returned from a callback should be discarded. See perlcall.

G_EVAL

Used to force a Perl eval wrapper around a callback. See perlcall.

G_NOARGS

Indicates that no arguments are being sent to a callback. See perlcall.

G_SCALAR

Used to indicate scalar context. See GIMME_V, GIMME, and perlcall.

G_VOID

Used to indicate void context. See GIMME_V and perlcall.

Array Manipulation Functions
AvFILL

Same as av_len(). Deprecated, use av_len() instead.

	 int	 AvFILL(AV* av)

av_clear

Clears an array, making it empty. Does not free the memory used by the
 array itself.

	 void	 av_clear(AV* ar)

Perl version 5.10.0 documentation - perlapi

Page 2http://perldoc.perl.org

av_create_and_push

Push an SV onto the end of the array, creating the array if necessary.
 A small internal
helper function to remove a commonly duplicated idiom.

NOTE: this function is experimental and may change or be
 removed without notice.

	 void	 av_create_and_push(AV **const avp, SV *const val)

av_create_and_unshift_one

Unshifts an SV onto the beginning of the array, creating the array if
 necessary.
 A small
internal helper function to remove a commonly duplicated idiom.

NOTE: this function is experimental and may change or be
 removed without notice.

	 SV**	 av_create_and_unshift_one(AV **const avp, SV *const val)

av_delete

Deletes the element indexed by key from the array. Returns the
 deleted element. If
flags equals G_DISCARD, the element is freed
 and null is returned.

	 SV*	 av_delete(AV* ar, I32 key, I32 flags)

av_exists

Returns true if the element indexed by key has been initialized.

This relies on the fact that uninitialized array elements are set to &PL_sv_undef.

	 bool	 av_exists(AV* ar, I32 key)

av_extend

Pre-extend an array. The key is the index to which the array should be
 extended.

	 void	 av_extend(AV* ar, I32 key)

av_fetch

Returns the SV at the specified index in the array. The key is the
 index. If lval is set
then the fetch will be part of a store. Check
 that the return value is non-null before
dereferencing it to a SV*.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for
 more
information on how to use this function on tied arrays.

	 SV**	 av_fetch(AV* ar, I32 key, I32 lval)

av_fill

Set the highest index in the array to the given number, equivalent to
 Perl's $#array =
 $fill;.

The number of elements in the an array will be fill + 1 after
 av_fill() returns. If the
array was previously shorter then the
 additional elements appended are set to
PL_sv_undef. If the array
 was longer, then the excess elements are freed.
av_fill(av, -1) is
 the same as av_clear(av).

	 void	 av_fill(AV* ar, I32 fill)

av_len

Returns the highest index in the array. The number of elements in the
 array is
av_len(av) + 1. Returns -1 if the array is empty.

	 I32	 av_len(const AV* ar)

Perl version 5.10.0 documentation - perlapi

Page 3http://perldoc.perl.org

av_make

Creates a new AV and populates it with a list of SVs. The SVs are copied
 into the
array, so they may be freed after the call to av_make. The new AV
 will have a
reference count of 1.

	 AV*	 av_make(I32 size, SV** svp)

av_pop

Pops an SV off the end of the array. Returns &PL_sv_undef if the array
 is empty.

	 SV*	 av_pop(AV* ar)

av_push

Pushes an SV onto the end of the array. The array will grow automatically
 to
accommodate the addition.

	 void	 av_push(AV* ar, SV* val)

av_shift

Shifts an SV off the beginning of the array.

	 SV*	 av_shift(AV* ar)

av_store

Stores an SV in an array. The array index is specified as key. The
 return value will be
NULL if the operation failed or if the value did not
 need to be actually stored within the
array (as in the case of tied
 arrays). Otherwise it can be dereferenced to get the
original SV*. Note
 that the caller is responsible for suitably incrementing the reference

count of val before the call, and decrementing it if the function
 returned NULL.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for
 more
information on how to use this function on tied arrays.

	 SV**	 av_store(AV* ar, I32 key, SV* val)

av_undef

Undefines the array. Frees the memory used by the array itself.

	 void	 av_undef(AV* ar)

av_unshift

Unshift the given number of undef values onto the beginning of the
 array. The array
will grow automatically to accommodate the addition. You
 must then use av_store to
assign values to these new elements.

	 void	 av_unshift(AV* ar, I32 num)

get_av

Returns the AV of the specified Perl array. If create is set and the
 Perl variable does
not exist then it will be created. If create is not
 set and the variable does not exist
then NULL is returned.

NOTE: the perl_ form of this function is deprecated.

	 AV*	 get_av(const char* name, I32 create)

newAV

Perl version 5.10.0 documentation - perlapi

Page 4http://perldoc.perl.org

Creates a new AV. The reference count is set to 1.

	 AV*	 newAV()

sortsv

Sort an array. Here is an example:

 sortsv(AvARRAY(av), av_len(av)+1, Perl_sv_cmp_locale);

Currently this always uses mergesort. See sortsv_flags for a more
 flexible routine.

	 void	 sortsv(SV** array, size_t num_elts, SVCOMPARE_t cmp)

sortsv_flags

Sort an array, with various options.

	 void	 sortsv_flags(SV** array, size_t num_elts, SVCOMPARE_t cmp,
 U32 flags)

Callback Functions
call_argv

Performs a callback to the specified Perl sub. See perlcall.

NOTE: the perl_ form of this function is deprecated.

	 I32	 call_argv(const char* sub_name, I32 flags, char** argv)

call_method

Performs a callback to the specified Perl method. The blessed object must
 be on the
stack. See perlcall.

NOTE: the perl_ form of this function is deprecated.

	 I32	 call_method(const char* methname, I32 flags)

call_pv

Performs a callback to the specified Perl sub. See perlcall.

NOTE: the perl_ form of this function is deprecated.

	 I32	 call_pv(const char* sub_name, I32 flags)

call_sv

Performs a callback to the Perl sub whose name is in the SV. See perlcall.

NOTE: the perl_ form of this function is deprecated.

	 I32	 call_sv(SV* sv, I32 flags)

ENTER

Opening bracket on a callback. See LEAVE and perlcall.

		 ENTER;

eval_pv

Tells Perl to eval the given string and return an SV* result.

NOTE: the perl_ form of this function is deprecated.

	 SV*	 eval_pv(const char* p, I32 croak_on_error)

Perl version 5.10.0 documentation - perlapi

Page 5http://perldoc.perl.org

eval_sv

Tells Perl to eval the string in the SV.

NOTE: the perl_ form of this function is deprecated.

	 I32	 eval_sv(SV* sv, I32 flags)

FREETMPS

Closing bracket for temporaries on a callback. See SAVETMPS and perlcall.

		 FREETMPS;

LEAVE

Closing bracket on a callback. See ENTER and perlcall.

		 LEAVE;

SAVETMPS

Opening bracket for temporaries on a callback. See FREETMPS and perlcall.

		 SAVETMPS;

Character classes
isALNUM

Returns a boolean indicating whether the C char is an ASCII alphanumeric
 character
(including underscore) or digit.

	 bool	 isALNUM(char ch)

isALPHA

Returns a boolean indicating whether the C char is an ASCII alphabetic
 character.

	 bool	 isALPHA(char ch)

isDIGIT

Returns a boolean indicating whether the C char is an ASCII
 digit.

	 bool	 isDIGIT(char ch)

isLOWER

Returns a boolean indicating whether the C char is a lowercase
 character.

	 bool	 isLOWER(char ch)

isSPACE

Returns a boolean indicating whether the C char is whitespace.

	 bool	 isSPACE(char ch)

isUPPER

Returns a boolean indicating whether the C char is an uppercase
 character.

	 bool	 isUPPER(char ch)

toLOWER

Converts the specified character to lowercase.

Perl version 5.10.0 documentation - perlapi

Page 6http://perldoc.perl.org

	 char	 toLOWER(char ch)

toUPPER

Converts the specified character to uppercase.

	 char	 toUPPER(char ch)

Cloning an interpreter
perl_clone

Create and return a new interpreter by cloning the current one.

perl_clone takes these flags as parameters:

CLONEf_COPY_STACKS - is used to, well, copy the stacks also,
 without it we only
clone the data and zero the stacks,
 with it we copy the stacks and the new perl
interpreter is
 ready to run at the exact same point as the previous one.
 The
pseudo-fork code uses COPY_STACKS while the
 threads->create doesn't.

CLONEf_KEEP_PTR_TABLE
 perl_clone keeps a ptr_table with the pointer of the old

variable as a key and the new variable as a value,
 this allows it to check if something
has been cloned and not
 clone it again but rather just use the value and increase the

refcount. If KEEP_PTR_TABLE is not set then perl_clone will kill
 the ptr_table using
the function ptr_table_free(PL_ptr_table); PL_ptr_table = NULL;,

reason to keep it around is if you want to dup some of your own
 variable who are
outside the graph perl scans, example of this
 code is in threads.xs create

CLONEf_CLONE_HOST
 This is a win32 thing, it is ignored on unix, it tells perls

win32host code (which is c++) to clone itself, this is needed on
 win32 if you want to run
two threads at the same time,
 if you just want to do some stuff in a separate perl
interpreter
 and then throw it away and return to the original one,
 you don't need to do
anything.

	 PerlInterpreter*	 perl_clone(PerlInterpreter* interp, UV flags)

CV Manipulation Functions
CvSTASH

Returns the stash of the CV.

	 HV*	 CvSTASH(CV* cv)

get_cv

Uses strlen to get the length of name, then calls get_cvn_flags.

NOTE: the perl_ form of this function is deprecated.

	 CV*	 get_cv(const char* name, I32 flags)

get_cvn_flags

Returns the CV of the specified Perl subroutine. flags are passed to
gv_fetchpvn_flags. If GV_ADD is set and the Perl subroutine does not
 exist then it
will be declared (which has the same effect as saying sub name;). If GV_ADD is not
set and the subroutine does not exist
 then NULL is returned.

NOTE: the perl_ form of this function is deprecated.

	 CV*	 get_cvn_flags(const char* name, STRLEN len, I32 flags)

Perl version 5.10.0 documentation - perlapi

Page 7http://perldoc.perl.org

Embedding Functions
cv_undef

Clear out all the active components of a CV. This can happen either
 by an explicit
undef &foo, or by the reference count going to zero.
 In the former case, we keep the
CvOUTSIDE pointer, so that any anonymous
 children can still follow the full lexical
scope chain.

	 void	 cv_undef(CV* cv)

load_module

Loads the module whose name is pointed to by the string part of name.
 Note that the
actual module name, not its filename, should be given.
 Eg, "Foo::Bar" instead of
"Foo/Bar.pm". flags can be any of
 PERL_LOADMOD_DENY,
PERL_LOADMOD_NOIMPORT, or PERL_LOADMOD_IMPORT_OPS
 (or 0 for no
flags). ver, if specified, provides version semantics
 similar to use Foo::Bar
VERSION. The optional trailing SV*
 arguments can be used to specify arguments to
the module's import()
 method, similar to use Foo::Bar VERSION LIST.

	 void	 load_module(U32 flags, SV* name, SV* ver, ...)

nothreadhook

Stub that provides thread hook for perl_destruct when there are
 no threads.

	 int	 nothreadhook()

perl_alloc

Allocates a new Perl interpreter. See perlembed.

	 PerlInterpreter*	 perl_alloc()

perl_construct

Initializes a new Perl interpreter. See perlembed.

	 void	 perl_construct(PerlInterpreter* interp)

perl_destruct

Shuts down a Perl interpreter. See perlembed.

	 int	 perl_destruct(PerlInterpreter* interp)

perl_free

Releases a Perl interpreter. See perlembed.

	 void	 perl_free(PerlInterpreter* interp)

perl_parse

Tells a Perl interpreter to parse a Perl script. See perlembed.

	 int	 perl_parse(PerlInterpreter* interp, XSINIT_t xsinit, int
argc, char** argv, char** env)

perl_run

Tells a Perl interpreter to run. See perlembed.

	 int	 perl_run(PerlInterpreter* interp)

Perl version 5.10.0 documentation - perlapi

Page 8http://perldoc.perl.org

require_pv

Tells Perl to require the file named by the string argument. It is
 analogous to the Perl
code eval "require '$file'". It's even
 implemented that way; consider using
load_module instead.

NOTE: the perl_ form of this function is deprecated.

	 void	 require_pv(const char* pv)

Functions in file dump.c
pv_display

 char *pv_display(SV *dsv, const char *pv, STRLEN cur, STRLEN
len,
 STRLEN pvlim, U32 flags)

Similar to

 pv_escape(dsv,pv,cur,pvlim,PERL_PV_ESCAPE_QUOTE);

except that an additional "\0" will be appended to the string when
 len > cur and pv[cur]
is "\0".

Note that the final string may be up to 7 chars longer than pvlim.

	 char*	 pv_display(SV *dsv, const char *pv, STRLEN cur, STRLEN
len, STRLEN pvlim)

pv_escape

 |const STRLEN count|const STRLEN max
 |STRLEN const *escaped, const U32 flags

Escapes at most the first "count" chars of pv and puts the results into
 dsv such that the
size of the escaped string will not exceed "max" chars
 and will not contain any
incomplete escape sequences.

If flags contains PERL_PV_ESCAPE_QUOTE then any double quotes in the string
 will
also be escaped.

Normally the SV will be cleared before the escaped string is prepared,
 but when
PERL_PV_ESCAPE_NOCLEAR is set this will not occur.

If PERL_PV_ESCAPE_UNI is set then the input string is treated as Unicode,
 if
PERL_PV_ESCAPE_UNI_DETECT is set then the input string is scanned
 using
is_utf8_string() to determine if it is Unicode.

If PERL_PV_ESCAPE_ALL is set then all input chars will be output
 using \x01F1
style escapes, otherwise only chars above 255 will be
 escaped using this style, other
non printable chars will use octal or
 common escaped patterns like \n. If
PERL_PV_ESCAPE_NOBACKSLASH
 then all chars below 255 will be treated as
printable and will be output as literals.

If PERL_PV_ESCAPE_FIRSTCHAR is set then only the first char of the
 string will be
escaped, regardles of max. If the string is utf8 and the chars value is >255 then it will
be returned as a plain hex sequence. Thus the output will either be a single char, an
octal escape sequence, a special escape like \n or a 3 or more digit hex value.

If PERL_PV_ESCAPE_RE is set then the escape char used will be a '%' and
 not a '\\'.
This is because regexes very often contain backslashed
 sequences, whereas '%' is
not a particularly common character in patterns.

Returns a pointer to the escaped text as held by dsv.

NOTE: the perl_ form of this function is deprecated.

Perl version 5.10.0 documentation - perlapi

Page 9http://perldoc.perl.org

	 char*	 pv_escape(SV *dsv, char const * const str, const STRLEN
count, const STRLEN max, STRLEN * const escaped, const U32
flags)

pv_pretty

 |const STRLEN count|const STRLEN max\
 |const char const *start_color| const char const
*end_color\
 |const U32 flags

Converts a string into something presentable, handling escaping via
 pv_escape() and
supporting quoting and ellipses.

If the PERL_PV_PRETTY_QUOTE flag is set then the result will be double quoted
with any double quotes in the string escaped. Otherwise
 if the
PERL_PV_PRETTY_LTGT flag is set then the result be wrapped in
 angle brackets.

If the PERL_PV_PRETTY_ELLIPSES flag is set and not all characters in
 string were
output then an ellipsis ... will be appended to the
 string. Note that this happens
AFTER it has been quoted.

If start_color is non-null then it will be inserted after the opening
 quote (if there is one)
but before the escaped text. If end_color
 is non-null then it will be inserted after the
escaped text but before
 any quotes or ellipses.

Returns a pointer to the prettified text as held by dsv.

NOTE: the perl_ form of this function is deprecated.

	 char*	 pv_pretty(SV *dsv, char const * const str, const STRLEN
count, const STRLEN max, char const * const start_color, char
const * const end_color, const U32 flags)

Functions in file mathoms.c
gv_fetchmethod

See gv_fetchmethod_autoload.

	 GV*	 gv_fetchmethod(HV* stash, const char* name)

pack_cat

The engine implementing pack() Perl function. Note: parameters next_in_list and
 flags
are not used. This call should not be used; use packlist instead.

	 void	 pack_cat(SV *cat, const char *pat, const char *patend, SV
beglist, SV **endlist, SV *next_in_list, U32 flags)

sv_2pvbyte_nolen

Return a pointer to the byte-encoded representation of the SV.
 May cause the SV to
be downgraded from UTF-8 as a side-effect.

Usually accessed via the SvPVbyte_nolen macro.

	 char*	 sv_2pvbyte_nolen(SV* sv)

sv_2pvutf8_nolen

Return a pointer to the UTF-8-encoded representation of the SV.
 May cause the SV to
be upgraded to UTF-8 as a side-effect.

Usually accessed via the SvPVutf8_nolen macro.

Perl version 5.10.0 documentation - perlapi

Page 10http://perldoc.perl.org

	 char*	 sv_2pvutf8_nolen(SV* sv)

sv_2pv_nolen

Like sv_2pv(), but doesn't return the length too. You should usually
 use the macro
wrapper SvPV_nolen(sv) instead.
 char*	 sv_2pv_nolen(SV* sv)

sv_catpvn_mg

Like sv_catpvn, but also handles 'set' magic.

	 void	 sv_catpvn_mg(SV *sv, const char *ptr, STRLEN len)

sv_catsv_mg

Like sv_catsv, but also handles 'set' magic.

	 void	 sv_catsv_mg(SV *dstr, SV *sstr)

sv_force_normal

Undo various types of fakery on an SV: if the PV is a shared string, make
 a private
copy; if we're a ref, stop refing; if we're a glob, downgrade to
 an xpvmg. See also
sv_force_normal_flags.

	 void	 sv_force_normal(SV *sv)

sv_iv

A private implementation of the SvIVx macro for compilers which can't
 cope with
complex macro expressions. Always use the macro instead.

	 IV	 sv_iv(SV* sv)

sv_nolocking

Dummy routine which "locks" an SV when there is no locking module present.
 Exists to
avoid test for a NULL function pointer and because it could
 potentially warn under
some level of strict-ness.

"Superseded" by sv_nosharing().

	 void	 sv_nolocking(SV *sv)

sv_nounlocking

Dummy routine which "unlocks" an SV when there is no locking module present.
 Exists
to avoid test for a NULL function pointer and because it could
 potentially warn under
some level of strict-ness.

"Superseded" by sv_nosharing().

	 void	 sv_nounlocking(SV *sv)

sv_nv

A private implementation of the SvNVx macro for compilers which can't
 cope with
complex macro expressions. Always use the macro instead.

	 NV	 sv_nv(SV* sv)

sv_pv

Use the SvPV_nolen macro instead

	 char*	 sv_pv(SV *sv)

Perl version 5.10.0 documentation - perlapi

Page 11http://perldoc.perl.org

sv_pvbyte

Use SvPVbyte_nolen instead.

	 char*	 sv_pvbyte(SV *sv)

sv_pvbyten

A private implementation of the SvPVbyte macro for compilers
 which can't cope with
complex macro expressions. Always use the macro
 instead.

	 char*	 sv_pvbyten(SV *sv, STRLEN *len)

sv_pvn

A private implementation of the SvPV macro for compilers which can't
 cope with
complex macro expressions. Always use the macro instead.

	 char*	 sv_pvn(SV *sv, STRLEN *len)

sv_pvutf8

Use the SvPVutf8_nolen macro instead

	 char*	 sv_pvutf8(SV *sv)

sv_pvutf8n

A private implementation of the SvPVutf8 macro for compilers
 which can't cope with
complex macro expressions. Always use the macro
 instead.

	 char*	 sv_pvutf8n(SV *sv, STRLEN *len)

sv_taint

Taint an SV. Use SvTAINTED_on instead.
 void	 sv_taint(SV* sv)

sv_unref

Unsets the RV status of the SV, and decrements the reference count of
 whatever was
being referenced by the RV. This can almost be thought of
 as a reversal of newSVrv.
This is sv_unref_flags with the flag
 being zero. See SvROK_off.

	 void	 sv_unref(SV* sv)

sv_usepvn

Tells an SV to use ptr to find its string value. Implemented by
 calling
sv_usepvn_flags with flags of 0, hence does not handle 'set'
 magic. See
sv_usepvn_flags.

	 void	 sv_usepvn(SV* sv, char* ptr, STRLEN len)

sv_usepvn_mg

Like sv_usepvn, but also handles 'set' magic.

	 void	 sv_usepvn_mg(SV *sv, char *ptr, STRLEN len)

sv_uv

A private implementation of the SvUVx macro for compilers which can't
 cope with
complex macro expressions. Always use the macro instead.

	 UV	 sv_uv(SV* sv)

Perl version 5.10.0 documentation - perlapi

Page 12http://perldoc.perl.org

unpack_str

The engine implementing unpack() Perl function. Note: parameters strbeg, new_s
 and
ocnt are not used. This call should not be used, use unpackstring instead.

	 I32	 unpack_str(const char *pat, const char *patend, const char
*s, const char *strbeg, const char *strend, char **new_s, I32
ocnt, U32 flags)

Functions in file pp_ctl.c
find_runcv

Locate the CV corresponding to the currently executing sub or eval.
 If db_seqp is
non_null, skip CVs that are in the DB package and populate
 *db_seqp with the cop
sequence number at the point that the DB:: code was
 entered. (allows debuggers to
eval in the scope of the breakpoint rather
 than in the scope of the debugger itself).

	 CV*	 find_runcv(U32 *db_seqp)

Functions in file pp_pack.c
packlist

The engine implementing pack() Perl function.

	 void	 packlist(SV *cat, const char *pat, const char *patend, SV
**beglist, SV **endlist)

unpackstring

The engine implementing unpack() Perl function. unpackstring puts the
 extracted
list items on the stack and returns the number of elements.
 Issue PUTBACK before and
SPAGAIN after the call to this function.

	 I32	 unpackstring(const char *pat, const char *patend, const
char *s, const char *strend, U32 flags)

GV Functions
GvSV

Return the SV from the GV.

	 SV*	 GvSV(GV* gv)

gv_const_sv

If gv is a typeglob whose subroutine entry is a constant sub eligible for
 inlining, or gv
is a placeholder reference that would be promoted to such
 a typeglob, then returns the
value returned by the sub. Otherwise, returns
 NULL.

	 SV*	 gv_const_sv(GV* gv)

gv_fetchmeth

Returns the glob with the given name and a defined subroutine or NULL. The glob lives
in the given stash, or in the stashes
 accessible via @ISA and UNIVERSAL::.

The argument level should be either 0 or -1. If level==0, as a
 side-effect creates a
glob with the given name in the given stash
 which in the case of success contains an
alias for the subroutine, and sets
 up caching info for this glob.

This function grants "SUPER" token as a postfix of the stash name. The
 GV returned
from gv_fetchmeth may be a method cache entry, which is not
 visible to Perl code.
So when calling call_sv, you should not use
 the GV directly; instead, you should use

Perl version 5.10.0 documentation - perlapi

Page 13http://perldoc.perl.org

the method's CV, which can be
 obtained from the GV with the GvCV macro.

	 GV*	 gv_fetchmeth(HV* stash, const char* name, STRLEN len, I32
level)

gv_fetchmethod_autoload

Returns the glob which contains the subroutine to call to invoke the method
 on the
stash. In fact in the presence of autoloading this may be the
 glob for "AUTOLOAD".
In this case the corresponding variable $AUTOLOAD is
 already setup.

The third parameter of gv_fetchmethod_autoload determines whether

AUTOLOAD lookup is performed if the given method is not present: non-zero
 means
yes, look for AUTOLOAD; zero means no, don't look for AUTOLOAD.
 Calling
gv_fetchmethod is equivalent to calling gv_fetchmethod_autoload
 with a
non-zero autoload parameter.

These functions grant "SUPER" token as a prefix of the method name. Note
 that if you
want to keep the returned glob for a long time, you need to
 check for it being
"AUTOLOAD", since at the later time the call may load a
 different subroutine due to
$AUTOLOAD changing its value. Use the glob
 created via a side effect to do this.

These functions have the same side-effects and as gv_fetchmeth with level==0.
name should be writable if contains ':' or '
 ''. The warning against passing the GV
returned by gv_fetchmeth to call_sv apply equally to these functions.

	 GV*	 gv_fetchmethod_autoload(HV* stash, const char* name, I32
autoload)

gv_fetchmeth_autoload

Same as gv_fetchmeth(), but looks for autoloaded subroutines too.
 Returns a glob for
the subroutine.

For an autoloaded subroutine without a GV, will create a GV even
 if level < 0. For
an autoloaded subroutine without a stub, GvCV()
 of the result may be zero.

	 GV*	 gv_fetchmeth_autoload(HV* stash, const char* name, STRLEN
len, I32 level)

gv_stashpv

Returns a pointer to the stash for a specified package. Uses strlen to
 determine the
length of name, then calls gv_stashpvn().

	 HV*	 gv_stashpv(const char* name, I32 flags)

gv_stashpvn

Returns a pointer to the stash for a specified package. The namelen
 parameter
indicates the length of the name, in bytes. flags is passed
 to
gv_fetchpvn_flags(), so if set to GV_ADD then the package will be
 created if it
does not already exist. If the package does not exist and flags is 0 (or any other
setting that does not create packages) then NULL
 is returned.

	 HV*	 gv_stashpvn(const char* name, U32 namelen, I32 flags)

gv_stashpvs

Like gv_stashpvn, but takes a literal string instead of a string/length pair.

	 HV*	 gv_stashpvs(const char* name, I32 create)

gv_stashsv

Perl version 5.10.0 documentation - perlapi

Page 14http://perldoc.perl.org

Returns a pointer to the stash for a specified package. See gv_stashpvn.

	 HV*	 gv_stashsv(SV* sv, I32 flags)

Handy Values
Nullav

Null AV pointer.

Nullch

Null character pointer.

Nullcv

Null CV pointer.

Nullhv

Null HV pointer.

Nullsv

Null SV pointer.

Hash Manipulation Functions
get_hv

Returns the HV of the specified Perl hash. If create is set and the
 Perl variable does
not exist then it will be created. If create is not
 set and the variable does not exist
then NULL is returned.

NOTE: the perl_ form of this function is deprecated.

	 HV*	 get_hv(const char* name, I32 create)

HEf_SVKEY

This flag, used in the length slot of hash entries and magic structures,
 specifies the
structure contains an SV* pointer where a char* pointer
 is to be expected. (For
information only--not to be used).

HeHASH

Returns the computed hash stored in the hash entry.

	 U32	 HeHASH(HE* he)

HeKEY

Returns the actual pointer stored in the key slot of the hash entry. The
 pointer may be
either char* or SV*, depending on the value of HeKLEN(). Can be assigned to. The
HePV() or HeSVKEY() macros are
 usually preferable for finding the value of a key.

	 void*	 HeKEY(HE* he)

HeKLEN

If this is negative, and amounts to HEf_SVKEY, it indicates the entry
 holds an SV* key.
Otherwise, holds the actual length of the key. Can
 be assigned to. The HePV() macro
is usually preferable for finding key
 lengths.

	 STRLEN	 HeKLEN(HE* he)

HePV

Returns the key slot of the hash entry as a char* value, doing any
 necessary

Perl version 5.10.0 documentation - perlapi

Page 15http://perldoc.perl.org

dereferencing of possibly SV* keys. The length of the string
 is placed in len (this is a
macro, so do not use &len). If you do
 not care about what the length of the key is, you
may use the global
 variable PL_na, though this is rather less efficient than using a
local
 variable. Remember though, that hash keys in perl are free to contain
 embedded
nulls, so using strlen() or similar is not a good way to find
 the length of hash keys.
This is very similar to the SvPV() macro
 described elsewhere in this document.

	 char*	 HePV(HE* he, STRLEN len)

HeSVKEY

Returns the key as an SV*, or NULL if the hash entry does not
 contain an SV* key.

	 SV*	 HeSVKEY(HE* he)

HeSVKEY_force

Returns the key as an SV*. Will create and return a temporary mortal SV* if the hash
entry contains only a char* key.

	 SV*	 HeSVKEY_force(HE* he)

HeSVKEY_set

Sets the key to a given SV*, taking care to set the appropriate flags to
 indicate the
presence of an SV* key, and returns the same SV*.

	 SV*	 HeSVKEY_set(HE* he, SV* sv)

HeVAL

Returns the value slot (type SV*) stored in the hash entry.

	 SV*	 HeVAL(HE* he)

HvNAME

Returns the package name of a stash, or NULL if stash isn't a stash.
 See SvSTASH,
CvSTASH.

	 char*	 HvNAME(HV* stash)

hv_assert

Check that a hash is in an internally consistent state.

	 void	 hv_assert(HV* tb)

hv_clear

Clears a hash, making it empty.

	 void	 hv_clear(HV* tb)

hv_clear_placeholders

Clears any placeholders from a hash. If a restricted hash has any of its keys
 marked
as readonly and the key is subsequently deleted, the key is not actually
 deleted but is
marked by assigning it a value of &PL_sv_placeholder. This tags
 it so it will be ignored
by future operations such as iterating over the hash,
 but will still allow the hash to have
a value reassigned to the key at some
 future point. This function clears any such
placeholder keys from the hash.
 See Hash::Util::lock_keys() for an example of its use.

	 void	 hv_clear_placeholders(HV* hb)

Perl version 5.10.0 documentation - perlapi

Page 16http://perldoc.perl.org

hv_delete

Deletes a key/value pair in the hash. The value SV is removed from the
 hash and
returned to the caller. The klen is the length of the key.
 The flags value will normally
be zero; if set to G_DISCARD then NULL
 will be returned.

	 SV*	 hv_delete(HV* tb, const char* key, I32 klen, I32 flags)

hv_delete_ent

Deletes a key/value pair in the hash. The value SV is removed from the
 hash and
returned to the caller. The flags value will normally be zero;
 if set to G_DISCARD
then NULL will be returned. hash can be a valid
 precomputed hash value, or 0 to ask
for it to be computed.

	 SV*	 hv_delete_ent(HV* tb, SV* key, I32 flags, U32 hash)

hv_exists

Returns a boolean indicating whether the specified hash key exists. The klen is the
length of the key.

	 bool	 hv_exists(HV* tb, const char* key, I32 klen)

hv_exists_ent

Returns a boolean indicating whether the specified hash key exists. hash
 can be a
valid precomputed hash value, or 0 to ask for it to be
 computed.

	 bool	 hv_exists_ent(HV* tb, SV* key, U32 hash)

hv_fetch

Returns the SV which corresponds to the specified key in the hash. The klen is the
length of the key. If lval is set then the fetch will be
 part of a store. Check that the
return value is non-null before
 dereferencing it to an SV*.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more

information on how to use this function on tied hashes.

	 SV**	 hv_fetch(HV* tb, const char* key, I32 klen, I32 lval)

hv_fetchs

Like hv_fetch, but takes a literal string instead of a string/length pair.

	 SV**	 hv_fetchs(HV* tb, const char* key, I32 lval)

hv_fetch_ent

Returns the hash entry which corresponds to the specified key in the hash. hash must
be a valid precomputed hash number for the given key, or 0
 if you want the function to
compute it. IF lval is set then the fetch
 will be part of a store. Make sure the return
value is non-null before
 accessing it. The return value when tb is a tied hash is a
pointer to a
 static location, so be sure to make a copy of the structure if you need to

store it somewhere.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more

information on how to use this function on tied hashes.

	 HE*	 hv_fetch_ent(HV* tb, SV* key, I32 lval, U32 hash)

hv_iterinit

Prepares a starting point to traverse a hash table. Returns the number of
 keys in the

Perl version 5.10.0 documentation - perlapi

Page 17http://perldoc.perl.org

hash (i.e. the same as HvKEYS(tb)). The return value is
 currently only meaningful for
hashes without tie magic.

NOTE: Before version 5.004_65, hv_iterinit used to return the number of
 hash
buckets that happen to be in use. If you still need that esoteric
 value, you can get it
through the macro HvFILL(tb).

	 I32	 hv_iterinit(HV* tb)

hv_iterkey

Returns the key from the current position of the hash iterator. See hv_iterinit.

	 char*	 hv_iterkey(HE* entry, I32* retlen)

hv_iterkeysv

Returns the key as an SV* from the current position of the hash
 iterator. The return
value will always be a mortal copy of the key. Also
 see hv_iterinit.

	 SV*	 hv_iterkeysv(HE* entry)

hv_iternext

Returns entries from a hash iterator. See hv_iterinit.

You may call hv_delete or hv_delete_ent on the hash entry that the
 iterator
currently points to, without losing your place or invalidating your
 iterator. Note that in
this case the current entry is deleted from the hash
 with your iterator holding the last
reference to it. Your iterator is flagged
 to free the entry on the next call to
hv_iternext, so you must not discard
 your iterator immediately else the entry will
leak - call hv_iternext to
 trigger the resource deallocation.

	 HE*	 hv_iternext(HV* tb)

hv_iternextsv

Performs an hv_iternext, hv_iterkey, and hv_iterval in one
 operation.

	 SV*	 hv_iternextsv(HV* hv, char** key, I32* retlen)

hv_iternext_flags

Returns entries from a hash iterator. See hv_iterinit and hv_iternext.
 The
flags value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
 set
the placeholders keys (for restricted hashes) will be returned in addition
 to normal
keys. By default placeholders are automatically skipped over.
 Currently a placeholder
is implemented with a value that is &Perl_sv_placeholder. Note that the
implementation of placeholders and
 restricted hashes may change, and the
implementation currently is
 insufficiently abstracted for any change to be tidy.

NOTE: this function is experimental and may change or be
 removed without notice.

	 HE*	 hv_iternext_flags(HV* tb, I32 flags)

hv_iterval

Returns the value from the current position of the hash iterator. See hv_iterkey.

	 SV*	 hv_iterval(HV* tb, HE* entry)

hv_magic

Adds magic to a hash. See sv_magic.

	 void	 hv_magic(HV* hv, GV* gv, int how)

Perl version 5.10.0 documentation - perlapi

Page 18http://perldoc.perl.org

hv_scalar

Evaluates the hash in scalar context and returns the result. Handles magic when the
hash is tied.

	 SV*	 hv_scalar(HV* hv)

hv_store

Stores an SV in a hash. The hash key is specified as key and klen is
 the length of
the key. The hash parameter is the precomputed hash
 value; if it is zero then Perl will
compute it. The return value will be
 NULL if the operation failed or if the value did not
need to be actually
 stored within the hash (as in the case of tied hashes). Otherwise it
can
 be dereferenced to get the original SV*. Note that the caller is
 responsible for
suitably incrementing the reference count of val before
 the call, and decrementing it if
the function returned NULL. Effectively
 a successful hv_store takes ownership of one
reference to val. This is
 usually what you want; a newly created SV has a reference
count of one, so
 if all your code does is create SVs then store them in a hash, hv_store
will own the only reference to the new SV, and your code doesn't need to do
 anything
further to tidy up. hv_store is not implemented as a call to
 hv_store_ent, and does not
create a temporary SV for the key, so if your
 key data is not already in SV form then
use hv_store in preference to
 hv_store_ent.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more

information on how to use this function on tied hashes.

	 SV**	 hv_store(HV* tb, const char* key, I32 klen, SV* val, U32
hash)

hv_stores

Like hv_store, but takes a literal string instead of a string/length pair
 and omits the
hash parameter.

	 SV**	 hv_stores(HV* tb, const char* key, NULLOK SV* val)

hv_store_ent

Stores val in a hash. The hash key is specified as key. The hash
 parameter is the
precomputed hash value; if it is zero then Perl will
 compute it. The return value is the
new hash entry so created. It will be
 NULL if the operation failed or if the value did not
need to be actually
 stored within the hash (as in the case of tied hashes). Otherwise
the
 contents of the return value can be accessed using the He? macros
 described
here. Note that the caller is responsible for suitably
 incrementing the reference count
of val before the call, and
 decrementing it if the function returned NULL. Effectively a
successful
 hv_store_ent takes ownership of one reference to val. This is
 usually what
you want; a newly created SV has a reference count of one, so
 if all your code does is
create SVs then store them in a hash, hv_store
 will own the only reference to the new
SV, and your code doesn't need to do
 anything further to tidy up. Note that
hv_store_ent only reads the key;
 unlike val it does not take ownership of it, so
maintaining the correct
 reference count on key is entirely the caller's responsibility.
hv_store
 is not implemented as a call to hv_store_ent, and does not create a
temporary
 SV for the key, so if your key data is not already in SV form then use

hv_store in preference to hv_store_ent.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more

information on how to use this function on tied hashes.

	 HE*	 hv_store_ent(HV* tb, SV* key, SV* val, U32 hash)

hv_undef

Perl version 5.10.0 documentation - perlapi

Page 19http://perldoc.perl.org

Undefines the hash.

	 void	 hv_undef(HV* tb)

newHV

Creates a new HV. The reference count is set to 1.

	 HV*	 newHV()

Magical Functions
mg_clear

Clear something magical that the SV represents. See sv_magic.

	 int	 mg_clear(SV* sv)

mg_copy

Copies the magic from one SV to another. See sv_magic.

	 int	 mg_copy(SV* sv, SV* nsv, const char* key, I32 klen)

mg_find

Finds the magic pointer for type matching the SV. See sv_magic.

	 MAGIC*	 mg_find(const SV* sv, int type)

mg_free

Free any magic storage used by the SV. See sv_magic.

	 int	 mg_free(SV* sv)

mg_get

Do magic after a value is retrieved from the SV. See sv_magic.

	 int	 mg_get(SV* sv)

mg_length

Report on the SV's length. See sv_magic.

	 U32	 mg_length(SV* sv)

mg_magical

Turns on the magical status of an SV. See sv_magic.

	 void	 mg_magical(SV* sv)

mg_set

Do magic after a value is assigned to the SV. See sv_magic.

	 int	 mg_set(SV* sv)

SvGETMAGIC

Invokes mg_get on an SV if it has 'get' magic. This macro evaluates its
 argument
more than once.

	 void	 SvGETMAGIC(SV* sv)

Perl version 5.10.0 documentation - perlapi

Page 20http://perldoc.perl.org

SvLOCK

Arranges for a mutual exclusion lock to be obtained on sv if a suitable module
 has
been loaded.

	 void	 SvLOCK(SV* sv)

SvSETMAGIC

Invokes mg_set on an SV if it has 'set' magic. This macro evaluates its
 argument
more than once.

	 void	 SvSETMAGIC(SV* sv)

SvSetMagicSV

Like SvSetSV, but does any set magic required afterwards.

	 void	 SvSetMagicSV(SV* dsb, SV* ssv)

SvSetMagicSV_nosteal

Like SvSetSV_nosteal, but does any set magic required afterwards.

	 void	 SvSetMagicSV_nosteal(SV* dsv, SV* ssv)

SvSetSV

Calls sv_setsv if dsv is not the same as ssv. May evaluate arguments
 more than
once.

	 void	 SvSetSV(SV* dsb, SV* ssv)

SvSetSV_nosteal

Calls a non-destructive version of sv_setsv if dsv is not the same as
 ssv. May
evaluate arguments more than once.

	 void	 SvSetSV_nosteal(SV* dsv, SV* ssv)

SvSHARE

Arranges for sv to be shared between threads if a suitable module
 has been loaded.

	 void	 SvSHARE(SV* sv)

SvUNLOCK

Releases a mutual exclusion lock on sv if a suitable module
 has been loaded.

	 void	 SvUNLOCK(SV* sv)

Memory Management
Copy

The XSUB-writer's interface to the C memcpy function. The src is the
 source, dest is
the destination, nitems is the number of items, and type is
 the type. May fail on
overlapping copies. See also Move.

	 void	 Copy(void* src, void* dest, int nitems, type)

CopyD

Like Copy but returns dest. Useful for encouraging compilers to tail-call
 optimise.

	 void *	 CopyD(void* src, void* dest, int nitems, type)

Perl version 5.10.0 documentation - perlapi

Page 21http://perldoc.perl.org

Move

The XSUB-writer's interface to the C memmove function. The src is the
 source, dest
is the destination, nitems is the number of items, and type is
 the type. Can do
overlapping moves. See also Copy.

	 void	 Move(void* src, void* dest, int nitems, type)

MoveD

Like Move but returns dest. Useful for encouraging compilers to tail-call
 optimise.

	 void *	 MoveD(void* src, void* dest, int nitems, type)

Newx

The XSUB-writer's interface to the C malloc function.

In 5.9.3, Newx() and friends replace the older New() API, and drops
 the first
parameter, x, a debug aid which allowed callers to identify
 themselves. This aid has
been superseded by a new build option,
 PERL_MEM_LOG (see "PERL_MEM_LOG"
in perlhack). The older API is still
 there for use in XS modules supporting older perls.

	 void	 Newx(void* ptr, int nitems, type)

Newxc

The XSUB-writer's interface to the C malloc function, with
 cast. See also Newx.

	 void	 Newxc(void* ptr, int nitems, type, cast)

Newxz

The XSUB-writer's interface to the C malloc function. The allocated
 memory is
zeroed with memzero. See also Newx.

	 void	 Newxz(void* ptr, int nitems, type)

Poison

PoisonWith(0xEF) for catching access to freed memory.

	 void	 Poison(void* dest, int nitems, type)

PoisonFree

PoisonWith(0xEF) for catching access to freed memory.

	 void	 PoisonFree(void* dest, int nitems, type)

PoisonNew

PoisonWith(0xAB) for catching access to allocated but uninitialized memory.

	 void	 PoisonNew(void* dest, int nitems, type)

PoisonWith

Fill up memory with a byte pattern (a byte repeated over and over
 again) that hopefully
catches attempts to access uninitialized memory.

	 void	 PoisonWith(void* dest, int nitems, type, U8 byte)

Renew

The XSUB-writer's interface to the C realloc function.

Perl version 5.10.0 documentation - perlapi

Page 22http://perldoc.perl.org

	 void	 Renew(void* ptr, int nitems, type)

Renewc

The XSUB-writer's interface to the C realloc function, with
 cast.

	 void	 Renewc(void* ptr, int nitems, type, cast)

Safefree

The XSUB-writer's interface to the C free function.

	 void	 Safefree(void* ptr)

savepv

Perl's version of strdup(). Returns a pointer to a newly allocated
 string which is a
duplicate of pv. The size of the string is
 determined by strlen(). The memory
allocated for the new string can
 be freed with the Safefree() function.

	 char*	 savepv(const char* pv)

savepvn

Perl's version of what strndup() would be if it existed. Returns a
 pointer to a newly
allocated string which is a duplicate of the first len bytes from pv, plus a trailing NUL
byte. The memory allocated for
 the new string can be freed with the Safefree()
function.

	 char*	 savepvn(const char* pv, I32 len)

savepvs

Like savepvn, but takes a literal string instead of a string/length pair.

	 char*	 savepvs(const char* s)

savesharedpv

A version of savepv() which allocates the duplicate string in memory
 which is shared
between threads.

	 char*	 savesharedpv(const char* pv)

savesharedpvn

A version of savepvn() which allocates the duplicate string in memory
 which is
shared between threads. (With the specific difference that a NULL
 pointer is not
acceptable)

	 char*	 savesharedpvn(const char *const pv, const STRLEN len)

savesvpv

A version of savepv()/savepvn() which gets the string to duplicate from
 the passed
in SV using SvPV()

	 char*	 savesvpv(SV* sv)

StructCopy

This is an architecture-independent macro to copy one structure to another.

	 void	 StructCopy(type src, type dest, type)

Perl version 5.10.0 documentation - perlapi

Page 23http://perldoc.perl.org

Zero

The XSUB-writer's interface to the C memzero function. The dest is the
 destination,
nitems is the number of items, and type is the type.

	 void	 Zero(void* dest, int nitems, type)

ZeroD

Like Zero but returns dest. Useful for encouraging compilers to tail-call
 optimise.

	 void *	 ZeroD(void* dest, int nitems, type)

Miscellaneous Functions
fbm_compile

Analyses the string in order to make fast searches on it using fbm_instr()
 -- the
Boyer-Moore algorithm.

	 void	 fbm_compile(SV* sv, U32 flags)

fbm_instr

Returns the location of the SV in the string delimited by str and strend. It returns
NULL if the string can't be found. The sv
 does not have to be fbm_compiled, but the
search will not be as fast
 then.

	 char*	 fbm_instr(unsigned char* big, unsigned char* bigend, SV*
littlesv, U32 flags)

form

Takes a sprintf-style format pattern and conventional
 (non-SV) arguments and returns
the formatted string.

 (char *) Perl_form(pTHX_ const char* pat, ...)

can be used any place a string (char *) is required:

 char * s = Perl_form("%d.%d",major,minor);

Uses a single private buffer so if you want to format several strings you
 must explicitly
copy the earlier strings away (and free the copies when you
 are done).

	 char*	 form(const char* pat, ...)

getcwd_sv

Fill the sv with current working directory

	 int	 getcwd_sv(SV* sv)

my_snprintf

The C library snprintf functionality, if available and
 standards-compliant (uses
vsnprintf, actually). However, if the vsnprintf is not available, will unfortunately
use the unsafe vsprintf which can overrun the buffer (there is an overrun check,
 but
that may be too late). Consider using sv_vcatpvf instead, or
 getting vsnprintf.

	 int	 my_snprintf(char *buffer, const Size_t len, const char
*format, ...)

my_sprintf

The C library sprintf, wrapped if necessary, to ensure that it will return
 the length of

Perl version 5.10.0 documentation - perlapi

Page 24http://perldoc.perl.org

the string written to the buffer. Only rare pre-ANSI systems
 need the wrapper function -
usually this is a direct call to sprintf.

	 int	 my_sprintf(char *buffer, const char *pat, ...)

my_vsnprintf

The C library vsnprintf if available and standards-compliant.
 However, if if the
vsnprintf is not available, will unfortunately
 use the unsafe vsprintf which can
overrun the buffer (there is an
 overrun check, but that may be too late). Consider using
sv_vcatpvf instead, or getting vsnprintf.

	 int	 my_vsnprintf(char *buffer, const Size_t len, const char
*format, va_list ap)

new_version

Returns a new version object based on the passed in SV:

 SV *sv = new_version(SV *ver);

Does not alter the passed in ver SV. See "upg_version" if you
 want to upgrade the SV.

	 SV*	 new_version(SV *ver)

scan_version

Returns a pointer to the next character after the parsed
 version string, as well as
upgrading the passed in SV to
 an RV.

Function must be called with an already existing SV like

 sv = newSV(0);
 s = scan_version(s, SV *sv, bool qv);

Performs some preprocessing to the string to ensure that
 it has the correct
characteristics of a version. Flags the
 object if it contains an underscore (which
denotes this
 is an alpha version). The boolean qv denotes that the version
 should be
interpreted as if it had multiple decimals, even if
 it doesn't.

	 const char*	 scan_version(const char *vstr, SV *sv, bool qv)

strEQ

Test two strings to see if they are equal. Returns true or false.

	 bool	 strEQ(char* s1, char* s2)

strGE

Test two strings to see if the first, s1, is greater than or equal to
 the second, s2.
Returns true or false.

	 bool	 strGE(char* s1, char* s2)

strGT

Test two strings to see if the first, s1, is greater than the second, s2. Returns true or
false.

	 bool	 strGT(char* s1, char* s2)

strLE

Test two strings to see if the first, s1, is less than or equal to the
 second, s2. Returns

Perl version 5.10.0 documentation - perlapi

Page 25http://perldoc.perl.org

true or false.

	 bool	 strLE(char* s1, char* s2)

strLT

Test two strings to see if the first, s1, is less than the second, s2. Returns true or
false.

	 bool	 strLT(char* s1, char* s2)

strNE

Test two strings to see if they are different. Returns true or
 false.

	 bool	 strNE(char* s1, char* s2)

strnEQ

Test two strings to see if they are equal. The len parameter indicates
 the number of
bytes to compare. Returns true or false. (A wrapper for strncmp).

	 bool	 strnEQ(char* s1, char* s2, STRLEN len)

strnNE

Test two strings to see if they are different. The len parameter
 indicates the number of
bytes to compare. Returns true or false. (A
 wrapper for strncmp).

	 bool	 strnNE(char* s1, char* s2, STRLEN len)

sv_destroyable

Dummy routine which reports that object can be destroyed when there is no
 sharing
module present. It ignores its single SV argument, and returns
 'true'. Exists to avoid
test for a NULL function pointer and because it
 could potentially warn under some level
of strict-ness.

	 bool	 sv_destroyable(SV *sv)

sv_nosharing

Dummy routine which "shares" an SV when there is no sharing module present.
 Or
"locks" it. Or "unlocks" it. In other words, ignores its single SV argument.
 Exists to
avoid test for a NULL function pointer and because it could
 potentially warn under
some level of strict-ness.

	 void	 sv_nosharing(SV *sv)

upg_version

In-place upgrade of the supplied SV to a version object.

 SV *sv = upg_version(SV *sv, bool qv);

Returns a pointer to the upgraded SV. Set the boolean qv if you want
 to force this SV
to be interpreted as an "extended" version.

	 SV*	 upg_version(SV *ver, bool qv)

vcmp

Version object aware cmp. Both operands must already have been converted into
version objects.

Perl version 5.10.0 documentation - perlapi

Page 26http://perldoc.perl.org

	 int	 vcmp(SV *lvs, SV *rvs)

vnormal

Accepts a version object and returns the normalized string
 representation. Call like:

 sv = vnormal(rv);

NOTE: you can pass either the object directly or the SV
 contained within the RV.

	 SV*	 vnormal(SV *vs)

vnumify

Accepts a version object and returns the normalized floating
 point representation. Call
like:

 sv = vnumify(rv);

NOTE: you can pass either the object directly or the SV
 contained within the RV.

	 SV*	 vnumify(SV *vs)

vstringify

In order to maintain maximum compatibility with earlier versions
 of Perl, this function
will return either the floating point
 notation or the multiple dotted notation, depending
on whether
 the original version contained 1 or more dots, respectively

	 SV*	 vstringify(SV *vs)

vverify

Validates that the SV contains a valid version object.

 bool vverify(SV *vobj);

Note that it only confirms the bare minimum structure (so as not to get
 confused by
derived classes which may contain additional hash entries):

	 bool	 vverify(SV *vs)

MRO Functions
mro_get_linear_isa

Returns either mro_get_linear_isa_c3 or mro_get_linear_isa_dfs for the
given stash,
 dependant upon which MRO is in effect
 for that stash. The return value is
a
 read-only AV*.

You are responsible for SvREFCNT_inc() on the
 return value if you plan to store it
anywhere
 semi-permanently (otherwise it might be deleted
 out from under you the next
time the cache is
 invalidated).

	 AV*	 mro_get_linear_isa(HV* stash)

mro_method_changed_in

Invalidates method caching on any child classes
 of the given stash, so that they might
notice
 the changes in this one.

Ideally, all instances of PL_sub_generation++ in
 perl source outside of mro.c
should be
 replaced by calls to this.

Perl automatically handles most of the common
 ways a method might be redefined.
However, there
 are a few ways you could change a method in a stash
 without the

Perl version 5.10.0 documentation - perlapi

Page 27http://perldoc.perl.org

cache code noticing, in which case you
 need to call this method afterwards:

1) Directly manipulating the stash HV entries from
 XS code.

2) Assigning a reference to a readonly scalar
 constant into a stash entry in order to
create
 a constant subroutine (like constant.pm
 does).

This same method is available from pure perl
 via,
mro::method_changed_in(classname).

	 void	 mro_method_changed_in(HV* stash)

Multicall Functions
dMULTICALL

Declare local variables for a multicall. See "Lightweight Callbacks" in perlcall.

		 dMULTICALL;

MULTICALL

Make a lightweight callback. See "Lightweight Callbacks" in perlcall.

		 MULTICALL;

POP_MULTICALL

Closing bracket for a lightweight callback.
 See "Lightweight Callbacks" in perlcall.

		 POP_MULTICALL;

PUSH_MULTICALL

Opening bracket for a lightweight callback.
 See "Lightweight Callbacks" in perlcall.

		 PUSH_MULTICALL;

Numeric functions
grok_bin

converts a string representing a binary number to numeric form.

On entry start and *len give the string to scan, *flags gives
 conversion flags, and result
should be NULL or a pointer to an NV.
 The scan stops at the end of the string, or the
first invalid character.
 Unless PERL_SCAN_SILENT_ILLDIGIT is set in *flags,
encountering an
 invalid character will also trigger a warning.
 On return *len is set to the
length of the scanned string,
 and *flags gives output flags.

If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
 and nothing
is written to *result. If the value is > UV_MAX grok_bin
 returns UV_MAX, sets
PERL_SCAN_GREATER_THAN_UV_MAX in the output flags,
 and writes the value to
*result (or the value is discarded if result
 is NULL).

The binary number may optionally be prefixed with "0b" or "b" unless
PERL_SCAN_DISALLOW_PREFIX is set in *flags on entry. If
PERL_SCAN_ALLOW_UNDERSCORES is set in *flags then the binary
 number may use
'_' characters to separate digits.

	 UV	 grok_bin(const char* start, STRLEN* len_p, I32* flags, NV
*result)

grok_hex

converts a string representing a hex number to numeric form.

On entry start and *len give the string to scan, *flags gives
 conversion flags, and result

Perl version 5.10.0 documentation - perlapi

Page 28http://perldoc.perl.org

should be NULL or a pointer to an NV.
 The scan stops at the end of the string, or the
first invalid character.
 Unless PERL_SCAN_SILENT_ILLDIGIT is set in *flags,
encountering an
 invalid character will also trigger a warning.
 On return *len is set to the
length of the scanned string,
 and *flags gives output flags.

If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
 and
nothing is written to *result. If the value is > UV_MAX grok_hex
 returns UV_MAX,
sets PERL_SCAN_GREATER_THAN_UV_MAX in the output flags,
 and writes the value to
*result (or the value is discarded if result
 is NULL).

The hex number may optionally be prefixed with "0x" or "x" unless
PERL_SCAN_DISALLOW_PREFIX is set in *flags on entry. If
PERL_SCAN_ALLOW_UNDERSCORES is set in *flags then the hex
 number may use '_'
characters to separate digits.

	 UV	 grok_hex(const char* start, STRLEN* len_p, I32* flags, NV
*result)

grok_number

Recognise (or not) a number. The type of the number is returned
 (0 if unrecognised),
otherwise it is a bit-ORed combination of
 IS_NUMBER_IN_UV,
IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,

IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).

If the value of the number can fit an in UV, it is returned in the *valuep

IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV

will never be set unless *valuep is valid, but *valuep may have been assigned
 to during
processing even though IS_NUMBER_IN_UV is not set on return.
 If valuep is NULL,
IS_NUMBER_IN_UV will be set for the same cases as when
 valuep is non-NULL, but
no actual assignment (or SEGV) will occur.

IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were

seen (in which case *valuep gives the true value truncated to an integer), and

IS_NUMBER_NEG if the number is negative (in which case *valuep holds the
 absolute
value). IS_NUMBER_IN_UV is not set if e notation was used or the
 number is larger
than a UV.

	 int	 grok_number(const char *pv, STRLEN len, UV *valuep)

grok_numeric_radix

Scan and skip for a numeric decimal separator (radix).

	 bool	 grok_numeric_radix(const char **sp, const char *send)

grok_oct

converts a string representing an octal number to numeric form.

On entry start and *len give the string to scan, *flags gives
 conversion flags, and result
should be NULL or a pointer to an NV.
 The scan stops at the end of the string, or the
first invalid character.
 Unless PERL_SCAN_SILENT_ILLDIGIT is set in *flags,
encountering an
 invalid character will also trigger a warning.
 On return *len is set to the
length of the scanned string,
 and *flags gives output flags.

If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
 and
nothing is written to *result. If the value is > UV_MAX grok_oct
 returns UV_MAX,
sets PERL_SCAN_GREATER_THAN_UV_MAX in the output flags,
 and writes the value to
*result (or the value is discarded if result
 is NULL).

If PERL_SCAN_ALLOW_UNDERSCORES is set in *flags then the octal
 number may use
'_' characters to separate digits.

Perl version 5.10.0 documentation - perlapi

Page 29http://perldoc.perl.org

	 UV	 grok_oct(const char* start, STRLEN* len_p, I32* flags, NV
*result)

Perl_signbit

Return a non-zero integer if the sign bit on an NV is set, and 0 if
 it is not.

If Configure detects this system has a signbit() that will work with
 our NVs, then we just
use it via the #define in perl.h. Otherwise,
 fall back on this implementation. As a first
pass, this gets everything
 right except -0.0. Alas, catching -0.0 is the main use for this
function,
 so this is not too helpful yet. Still, at least we have the scaffolding
 in place to
support other systems, should that prove useful.

Configure notes: This function is called 'Perl_signbit' instead of a
 plain 'signbit'
because it is easy to imagine a system having a signbit()
 function or macro that doesn't
happen to work with our particular choice
 of NVs. We shouldn't just re-#define signbit
as Perl_signbit and expect
 the standard system headers to be happy. Also, this is a
no-context
 function (no pTHX_) because Perl_signbit() is usually re-#defined in
 perl.h
as a simple macro call to the system's signbit().
 Users should just always call
Perl_signbit().

NOTE: this function is experimental and may change or be
 removed without notice.

	 int	 Perl_signbit(NV f)

scan_bin

For backwards compatibility. Use grok_bin instead.

	 NV	 scan_bin(const char* start, STRLEN len, STRLEN* retlen)

scan_hex

For backwards compatibility. Use grok_hex instead.

	 NV	 scan_hex(const char* start, STRLEN len, STRLEN* retlen)

scan_oct

For backwards compatibility. Use grok_oct instead.

	 NV	 scan_oct(const char* start, STRLEN len, STRLEN* retlen)

Optree Manipulation Functions
cv_const_sv

If cv is a constant sub eligible for inlining. returns the constant
 value returned by the
sub. Otherwise, returns NULL.

Constant subs can be created with newCONSTSUB or as described in "Constant
Functions" in perlsub.

	 SV*	 cv_const_sv(CV* cv)

newCONSTSUB

Creates a constant sub equivalent to Perl sub FOO () { 123 } which is
 eligible for
inlining at compile-time.

	 CV*	 newCONSTSUB(HV* stash, const char* name, SV* sv)

newXS

Used by xsubpp to hook up XSUBs as Perl subs. filename needs to be
 static storage,
as it is used directly as CvFILE(), without a copy being made.

Perl version 5.10.0 documentation - perlapi

Page 30http://perldoc.perl.org

Pad Data Structures
pad_sv

Get the value at offset po in the current pad.
 Use macro PAD_SV instead of calling this
function directly.

	 SV*	 pad_sv(PADOFFSET po)

Per-Interpreter Variables
PL_modglobal

PL_modglobal is a general purpose, interpreter global HV for use by
 extensions that
need to keep information on a per-interpreter basis.
 In a pinch, it can also be used as a
symbol table for extensions
 to share data among each other. It is a good idea to use
keys
 prefixed by the package name of the extension that owns the data.

	 HV*	 PL_modglobal

PL_na

A convenience variable which is typically used with SvPV when one
 doesn't care about
the length of the string. It is usually more efficient
 to either declare a local variable and
use that instead or to use the SvPV_nolen macro.

	 STRLEN	 PL_na

PL_sv_no

This is the false SV. See PL_sv_yes. Always refer to this as &PL_sv_no.

	 SV	 PL_sv_no

PL_sv_undef

This is the undef SV. Always refer to this as &PL_sv_undef.

	 SV	 PL_sv_undef

PL_sv_yes

This is the true SV. See PL_sv_no. Always refer to this as &PL_sv_yes.

	 SV	 PL_sv_yes

REGEXP Functions
SvRX

Convenience macro to get the REGEXP from a SV. This is approximately
 equivalent to
the following snippet:

 if (SvMAGICAL(sv))
 mg_get(sv);
 if (SvROK(sv) &&
 (tmpsv = (SV*)SvRV(sv)) &&
 SvTYPE(tmpsv) == SVt_PVMG &&
 (tmpmg = mg_find(tmpsv, PERL_MAGIC_qr)))
 {
 return (REGEXP *)tmpmg->mg_obj;
 }

NULL will be returned if a REGEXP* is not found.

	 REGEXP *	 SvRX(SV *sv)

Perl version 5.10.0 documentation - perlapi

Page 31http://perldoc.perl.org

SvRXOK

Returns a boolean indicating whether the SV contains qr magic
 (PERL_MAGIC_qr).

If you want to do something with the REGEXP* later use SvRX instead
 and check for
NULL.

	 bool	 SvRXOK(SV* sv)

Simple Exception Handling Macros
dXCPT

Set up necessary local variables for exception handling.
 See "Exception Handling" in
perlguts.

		 dXCPT;

XCPT_CATCH

Introduces a catch block. See "Exception Handling" in perlguts.

XCPT_RETHROW

Rethrows a previously caught exception. See "Exception Handling" in perlguts.

		 XCPT_RETHROW;

XCPT_TRY_END

Ends a try block. See "Exception Handling" in perlguts.

XCPT_TRY_START

Starts a try block. See "Exception Handling" in perlguts.

Stack Manipulation Macros
dMARK

Declare a stack marker variable, mark, for the XSUB. See MARK and dORIGMARK.

		 dMARK;

dORIGMARK

Saves the original stack mark for the XSUB. See ORIGMARK.

		 dORIGMARK;

dSP

Declares a local copy of perl's stack pointer for the XSUB, available via
 the SP macro.
See SP.

		 dSP;

EXTEND

Used to extend the argument stack for an XSUB's return values. Once
 used,
guarantees that there is room for at least nitems to be pushed
 onto the stack.

	 void	 EXTEND(SP, int nitems)

MARK

Stack marker variable for the XSUB. See dMARK.

mPUSHi

Perl version 5.10.0 documentation - perlapi

Page 32http://perldoc.perl.org

Push an integer onto the stack. The stack must have room for this element.
 Handles
'set' magic. Does not use TARG. See also PUSHi, mXPUSHi
 and XPUSHi.

	 void	 mPUSHi(IV iv)

mPUSHn

Push a double onto the stack. The stack must have room for this element.
 Handles
'set' magic. Does not use TARG. See also PUSHn, mXPUSHn
 and XPUSHn.

	 void	 mPUSHn(NV nv)

mPUSHp

Push a string onto the stack. The stack must have room for this element.
 The len
indicates the length of the string. Handles 'set' magic. Does
 not use TARG. See also
PUSHp, mXPUSHp and XPUSHp.

	 void	 mPUSHp(char* str, STRLEN len)

mPUSHu

Push an unsigned integer onto the stack. The stack must have room for this
 element.
Handles 'set' magic. Does not use TARG. See also PUSHu, mXPUSHu and XPUSHu.

	 void	 mPUSHu(UV uv)

mXPUSHi

Push an integer onto the stack, extending the stack if necessary. Handles
 'set' magic.
Does not use TARG. See also XPUSHi, mPUSHi and PUSHi.

	 void	 mXPUSHi(IV iv)

mXPUSHn

Push a double onto the stack, extending the stack if necessary. Handles
 'set' magic.
Does not use TARG. See also XPUSHn, mPUSHn and PUSHn.

	 void	 mXPUSHn(NV nv)

mXPUSHp

Push a string onto the stack, extending the stack if necessary. The len
 indicates the
length of the string. Handles 'set' magic. Does not use TARG. See also XPUSHp,
mPUSHp and PUSHp.

	 void	 mXPUSHp(char* str, STRLEN len)

mXPUSHu

Push an unsigned integer onto the stack, extending the stack if necessary.
 Handles
'set' magic. Does not use TARG. See also XPUSHu, mPUSHu
 and PUSHu.

	 void	 mXPUSHu(UV uv)

ORIGMARK

The original stack mark for the XSUB. See dORIGMARK.

POPi

Pops an integer off the stack.

	 IV	 POPi

Perl version 5.10.0 documentation - perlapi

Page 33http://perldoc.perl.org

POPl

Pops a long off the stack.

	 long	 POPl

POPn

Pops a double off the stack.

	 NV	 POPn

POPp

Pops a string off the stack. Deprecated. New code should use POPpx.

	 char*	 POPp

POPpbytex

Pops a string off the stack which must consist of bytes i.e. characters < 256.

	 char*	 POPpbytex

POPpx

Pops a string off the stack.

	 char*	 POPpx

POPs

Pops an SV off the stack.

	 SV*	 POPs

PUSHi

Push an integer onto the stack. The stack must have room for this element.
 Handles
'set' magic. Uses TARG, so dTARGET or dXSTARG should be
 called to declare it. Do not
call multiple TARG-oriented macros to return lists from XSUB's - see mPUSHi instead.
See also XPUSHi and mXPUSHi.

	 void	 PUSHi(IV iv)

PUSHMARK

Opening bracket for arguments on a callback. See PUTBACK and perlcall.

	 void	 PUSHMARK(SP)

PUSHmortal

Push a new mortal SV onto the stack. The stack must have room for this
 element.
Does not handle 'set' magic. Does not use TARG. See also PUSHs, XPUSHmortal and
XPUSHs.

	 void	 PUSHmortal()

PUSHn

Push a double onto the stack. The stack must have room for this element.
 Handles
'set' magic. Uses TARG, so dTARGET or dXSTARG should be
 called to declare it. Do not
call multiple TARG-oriented macros to
 return lists from XSUB's - see mPUSHn instead.
See also XPUSHn and mXPUSHn.

Perl version 5.10.0 documentation - perlapi

Page 34http://perldoc.perl.org

	 void	 PUSHn(NV nv)

PUSHp

Push a string onto the stack. The stack must have room for this element.
 The len
indicates the length of the string. Handles 'set' magic. Uses TARG, so dTARGET or
dXSTARG should be called to declare it. Do not
 call multiple TARG-oriented macros to
return lists from XSUB's - see mPUSHp instead. See also XPUSHp and mXPUSHp.

	 void	 PUSHp(char* str, STRLEN len)

PUSHs

Push an SV onto the stack. The stack must have room for this element.
 Does not
handle 'set' magic. Does not use TARG. See also PUSHmortal, XPUSHs and
XPUSHmortal.

	 void	 PUSHs(SV* sv)

PUSHu

Push an unsigned integer onto the stack. The stack must have room for this
 element.
Handles 'set' magic. Uses TARG, so dTARGET or dXSTARG
 should be called to declare
it. Do not call multiple TARG-oriented
 macros to return lists from XSUB's - see mPUSHu
instead. See also XPUSHu and mXPUSHu.

	 void	 PUSHu(UV uv)

PUTBACK

Closing bracket for XSUB arguments. This is usually handled by xsubpp.
 See
PUSHMARK and perlcall for other uses.

		 PUTBACK;

SP

Stack pointer. This is usually handled by xsubpp. See dSP and SPAGAIN.

SPAGAIN

Refetch the stack pointer. Used after a callback. See perlcall.

		 SPAGAIN;

XPUSHi

Push an integer onto the stack, extending the stack if necessary. Handles
 'set' magic.
Uses TARG, so dTARGET or dXSTARG should be called to
 declare it. Do not call
multiple TARG-oriented macros to return lists
 from XSUB's - see mXPUSHi instead. See
also PUSHi and mPUSHi.

	 void	 XPUSHi(IV iv)

XPUSHmortal

Push a new mortal SV onto the stack, extending the stack if necessary. Does
 not
handle 'set' magic. Does not use TARG. See also XPUSHs, PUSHmortal and PUSHs.

	 void	 XPUSHmortal()

XPUSHn

Push a double onto the stack, extending the stack if necessary. Handles
 'set' magic.

Perl version 5.10.0 documentation - perlapi

Page 35http://perldoc.perl.org

Uses TARG, so dTARGET or dXSTARG should be called to
 declare it. Do not call
multiple TARG-oriented macros to return lists
 from XSUB's - see mXPUSHn instead. See
also PUSHn and mPUSHn.

	 void	 XPUSHn(NV nv)

XPUSHp

Push a string onto the stack, extending the stack if necessary. The len
 indicates the
length of the string. Handles 'set' magic. Uses TARG, so dTARGET or dXSTARG should
be called to declare it. Do not call
 multiple TARG-oriented macros to return lists from
XSUB's - see mXPUSHp instead. See also PUSHp and mPUSHp.

	 void	 XPUSHp(char* str, STRLEN len)

XPUSHs

Push an SV onto the stack, extending the stack if necessary. Does not
 handle 'set'
magic. Does not use TARG. See also XPUSHmortal, PUSHs and PUSHmortal.

	 void	 XPUSHs(SV* sv)

XPUSHu

Push an unsigned integer onto the stack, extending the stack if necessary.
 Handles
'set' magic. Uses TARG, so dTARGET or dXSTARG should be
 called to declare it. Do not
call multiple TARG-oriented macros to
 return lists from XSUB's - see mXPUSHu instead.
See also PUSHu and mPUSHu.

	 void	 XPUSHu(UV uv)

XSRETURN

Return from XSUB, indicating number of items on the stack. This is usually
 handled by
xsubpp.

	 void	 XSRETURN(int nitems)

XSRETURN_EMPTY

Return an empty list from an XSUB immediately.

		 XSRETURN_EMPTY;

XSRETURN_IV

Return an integer from an XSUB immediately. Uses XST_mIV.

	 void	 XSRETURN_IV(IV iv)

XSRETURN_NO

Return &PL_sv_no from an XSUB immediately. Uses XST_mNO.

		 XSRETURN_NO;

XSRETURN_NV

Return a double from an XSUB immediately. Uses XST_mNV.

	 void	 XSRETURN_NV(NV nv)

XSRETURN_PV

Return a copy of a string from an XSUB immediately. Uses XST_mPV.

Perl version 5.10.0 documentation - perlapi

Page 36http://perldoc.perl.org

	 void	 XSRETURN_PV(char* str)

XSRETURN_UNDEF

Return &PL_sv_undef from an XSUB immediately. Uses XST_mUNDEF.

		 XSRETURN_UNDEF;

XSRETURN_UV

Return an integer from an XSUB immediately. Uses XST_mUV.

	 void	 XSRETURN_UV(IV uv)

XSRETURN_YES

Return &PL_sv_yes from an XSUB immediately. Uses XST_mYES.

		 XSRETURN_YES;

XST_mIV

Place an integer into the specified position pos on the stack. The
 value is stored in a
new mortal SV.

	 void	 XST_mIV(int pos, IV iv)

XST_mNO

Place &PL_sv_no into the specified position pos on the
 stack.

	 void	 XST_mNO(int pos)

XST_mNV

Place a double into the specified position pos on the stack. The value
 is stored in a
new mortal SV.

	 void	 XST_mNV(int pos, NV nv)

XST_mPV

Place a copy of a string into the specified position pos on the stack. The value is
stored in a new mortal SV.

	 void	 XST_mPV(int pos, char* str)

XST_mUNDEF

Place &PL_sv_undef into the specified position pos on the
 stack.

	 void	 XST_mUNDEF(int pos)

XST_mYES

Place &PL_sv_yes into the specified position pos on the
 stack.

	 void	 XST_mYES(int pos)

SV Flags
svtype

An enum of flags for Perl types. These are found in the file sv.h
 in the svtype enum.
Test these flags with the SvTYPE macro.

Perl version 5.10.0 documentation - perlapi

Page 37http://perldoc.perl.org

SVt_IV

Integer type flag for scalars. See svtype.

SVt_NV

Double type flag for scalars. See svtype.

SVt_PV

Pointer type flag for scalars. See svtype.

SVt_PVAV

Type flag for arrays. See svtype.

SVt_PVCV

Type flag for code refs. See svtype.

SVt_PVHV

Type flag for hashes. See svtype.

SVt_PVMG

Type flag for blessed scalars. See svtype.

SV Manipulation Functions
get_sv

Returns the SV of the specified Perl scalar. If create is set and the
 Perl variable does
not exist then it will be created. If create is not
 set and the variable does not exist
then NULL is returned.

NOTE: the perl_ form of this function is deprecated.

	 SV*	 get_sv(const char* name, I32 create)

newRV_inc

Creates an RV wrapper for an SV. The reference count for the original SV is

incremented.

	 SV*	 newRV_inc(SV* sv)

SvCUR

Returns the length of the string which is in the SV. See SvLEN.

	 STRLEN	 SvCUR(SV* sv)

SvCUR_set

Set the current length of the string which is in the SV. See SvCUR
 and SvIV_set.

	 void	 SvCUR_set(SV* sv, STRLEN len)

SvEND

Returns a pointer to the last character in the string which is in the SV.
 See SvCUR.
Access the character as *(SvEND(sv)).

	 char*	 SvEND(SV* sv)

SvGAMAGIC

Returns true if the SV has get magic or overloading. If either is true then
 the scalar is
active data, and has the potential to return a new value every
 time it is accessed.

Perl version 5.10.0 documentation - perlapi

Page 38http://perldoc.perl.org

Hence you must be careful to only read it once per user
 logical operation and work
with that returned value. If neither is true then
 the scalar's value cannot change unless
written to.

	 char*	 SvGAMAGIC(SV* sv)

SvGROW

Expands the character buffer in the SV so that it has room for the
 indicated number of
bytes (remember to reserve space for an extra trailing
 NUL character). Calls sv_grow
to perform the expansion if necessary.
 Returns a pointer to the character buffer.

	 char *	 SvGROW(SV* sv, STRLEN len)

SvIOK

Returns a U32 value indicating whether the SV contains an integer.

	 U32	 SvIOK(SV* sv)

SvIOKp

Returns a U32 value indicating whether the SV contains an integer. Checks
 the
private setting. Use SvIOK.

	 U32	 SvIOKp(SV* sv)

SvIOK_notUV

Returns a boolean indicating whether the SV contains a signed integer.

	 bool	 SvIOK_notUV(SV* sv)

SvIOK_off

Unsets the IV status of an SV.

	 void	 SvIOK_off(SV* sv)

SvIOK_on

Tells an SV that it is an integer.

	 void	 SvIOK_on(SV* sv)

SvIOK_only

Tells an SV that it is an integer and disables all other OK bits.

	 void	 SvIOK_only(SV* sv)

SvIOK_only_UV

Tells and SV that it is an unsigned integer and disables all other OK bits.

	 void	 SvIOK_only_UV(SV* sv)

SvIOK_UV

Returns a boolean indicating whether the SV contains an unsigned integer.

	 bool	 SvIOK_UV(SV* sv)

SvIsCOW

Returns a boolean indicating whether the SV is Copy-On-Write. (either shared
 hash

Perl version 5.10.0 documentation - perlapi

Page 39http://perldoc.perl.org

key scalars, or full Copy On Write scalars if 5.9.0 is configured for
 COW)

	 bool	 SvIsCOW(SV* sv)

SvIsCOW_shared_hash

Returns a boolean indicating whether the SV is Copy-On-Write shared hash key

scalar.

	 bool	 SvIsCOW_shared_hash(SV* sv)

SvIV

Coerces the given SV to an integer and returns it. See SvIVx for a
 version which
guarantees to evaluate sv only once.

	 IV	 SvIV(SV* sv)

SvIVX

Returns the raw value in the SV's IV slot, without checks or conversions.
 Only use
when you are sure SvIOK is true. See also SvIV().

	 IV	 SvIVX(SV* sv)

SvIVx

Coerces the given SV to an integer and returns it. Guarantees to evaluate sv only
once. Only use this if sv is an expression with side effects,
 otherwise use the more
efficient SvIV.

	 IV	 SvIVx(SV* sv)

SvIV_nomg

Like SvIV but doesn't process magic.

	 IV	 SvIV_nomg(SV* sv)

SvIV_set

Set the value of the IV pointer in sv to val. It is possible to perform
 the same function of
this macro with an lvalue assignment to SvIVX.
 With future Perls, however, it will be
more efficient to use SvIV_set instead of the lvalue assignment to SvIVX.

	 void	 SvIV_set(SV* sv, IV val)

SvLEN

Returns the size of the string buffer in the SV, not including any part
 attributable to
SvOOK. See SvCUR.

	 STRLEN	 SvLEN(SV* sv)

SvLEN_set

Set the actual length of the string which is in the SV. See SvIV_set.

	 void	 SvLEN_set(SV* sv, STRLEN len)

SvMAGIC_set

Set the value of the MAGIC pointer in sv to val. See SvIV_set.

	 void	 SvMAGIC_set(SV* sv, MAGIC* val)

Perl version 5.10.0 documentation - perlapi

Page 40http://perldoc.perl.org

SvNIOK

Returns a U32 value indicating whether the SV contains a number, integer or
 double.

	 U32	 SvNIOK(SV* sv)

SvNIOKp

Returns a U32 value indicating whether the SV contains a number, integer or
 double.
Checks the private setting. Use SvNIOK.

	 U32	 SvNIOKp(SV* sv)

SvNIOK_off

Unsets the NV/IV status of an SV.

	 void	 SvNIOK_off(SV* sv)

SvNOK

Returns a U32 value indicating whether the SV contains a double.

	 U32	 SvNOK(SV* sv)

SvNOKp

Returns a U32 value indicating whether the SV contains a double. Checks the private
setting. Use SvNOK.

	 U32	 SvNOKp(SV* sv)

SvNOK_off

Unsets the NV status of an SV.

	 void	 SvNOK_off(SV* sv)

SvNOK_on

Tells an SV that it is a double.

	 void	 SvNOK_on(SV* sv)

SvNOK_only

Tells an SV that it is a double and disables all other OK bits.

	 void	 SvNOK_only(SV* sv)

SvNV

Coerce the given SV to a double and return it. See SvNVx for a version
 which
guarantees to evaluate sv only once.

	 NV	 SvNV(SV* sv)

SvNVX

Returns the raw value in the SV's NV slot, without checks or conversions.
 Only use
when you are sure SvNOK is true. See also SvNV().

	 NV	 SvNVX(SV* sv)

SvNVx

Coerces the given SV to a double and returns it. Guarantees to evaluate sv only once.

Perl version 5.10.0 documentation - perlapi

Page 41http://perldoc.perl.org

Only use this if sv is an expression with side effects,
 otherwise use the more efficient
SvNV.

	 NV	 SvNVx(SV* sv)

SvNV_set

Set the value of the NV pointer in sv to val. See SvIV_set.

	 void	 SvNV_set(SV* sv, NV val)

SvOK

Returns a U32 value indicating whether the value is an SV. It also tells
 whether the
value is defined or not.

	 U32	 SvOK(SV* sv)

SvOOK

Returns a U32 indicating whether the SvIVX is a valid offset value for
 the SvPVX. This
hack is used internally to speed up removal of characters
 from the beginning of a
SvPV. When SvOOK is true, then the start of the
 allocated string buffer is really
(SvPVX - SvIVX).

	 U32	 SvOOK(SV* sv)

SvPOK

Returns a U32 value indicating whether the SV contains a character
 string.

	 U32	 SvPOK(SV* sv)

SvPOKp

Returns a U32 value indicating whether the SV contains a character string.
 Checks the
private setting. Use SvPOK.

	 U32	 SvPOKp(SV* sv)

SvPOK_off

Unsets the PV status of an SV.

	 void	 SvPOK_off(SV* sv)

SvPOK_on

Tells an SV that it is a string.

	 void	 SvPOK_on(SV* sv)

SvPOK_only

Tells an SV that it is a string and disables all other OK bits.
 Will also turn off the UTF-8
status.

	 void	 SvPOK_only(SV* sv)

SvPOK_only_UTF8

Tells an SV that it is a string and disables all other OK bits,
 and leaves the UTF-8
status as it was.

	 void	 SvPOK_only_UTF8(SV* sv)

Perl version 5.10.0 documentation - perlapi

Page 42http://perldoc.perl.org

SvPV

Returns a pointer to the string in the SV, or a stringified form of
 the SV if the SV does
not contain a string. The SV may cache the
 stringified version becoming SvPOK.
Handles 'get' magic. See also SvPVx for a version which guarantees to evaluate sv
only once.

	 char*	 SvPV(SV* sv, STRLEN len)

SvPVbyte

Like SvPV, but converts sv to byte representation first if necessary.

	 char*	 SvPVbyte(SV* sv, STRLEN len)

SvPVbytex

Like SvPV, but converts sv to byte representation first if necessary.
 Guarantees to
evaluate sv only once; use the more efficient SvPVbyte
 otherwise.

	 char*	 SvPVbytex(SV* sv, STRLEN len)

SvPVbytex_force

Like SvPV_force, but converts sv to byte representation first if necessary.

Guarantees to evaluate sv only once; use the more efficient SvPVbyte_force

otherwise.

	 char*	 SvPVbytex_force(SV* sv, STRLEN len)

SvPVbyte_force

Like SvPV_force, but converts sv to byte representation first if necessary.

	 char*	 SvPVbyte_force(SV* sv, STRLEN len)

SvPVbyte_nolen

Like SvPV_nolen, but converts sv to byte representation first if necessary.

	 char*	 SvPVbyte_nolen(SV* sv)

SvPVutf8

Like SvPV, but converts sv to utf8 first if necessary.

	 char*	 SvPVutf8(SV* sv, STRLEN len)

SvPVutf8x

Like SvPV, but converts sv to utf8 first if necessary.
 Guarantees to evaluate sv only
once; use the more efficient SvPVutf8
 otherwise.

	 char*	 SvPVutf8x(SV* sv, STRLEN len)

SvPVutf8x_force

Like SvPV_force, but converts sv to utf8 first if necessary.
 Guarantees to evaluate sv
only once; use the more efficient SvPVutf8_force
 otherwise.

	 char*	 SvPVutf8x_force(SV* sv, STRLEN len)

SvPVutf8_force

Like SvPV_force, but converts sv to utf8 first if necessary.

Perl version 5.10.0 documentation - perlapi

Page 43http://perldoc.perl.org

	 char*	 SvPVutf8_force(SV* sv, STRLEN len)

SvPVutf8_nolen

Like SvPV_nolen, but converts sv to utf8 first if necessary.

	 char*	 SvPVutf8_nolen(SV* sv)

SvPVX

Returns a pointer to the physical string in the SV. The SV must contain a
 string.

	 char*	 SvPVX(SV* sv)

SvPVx

A version of SvPV which guarantees to evaluate sv only once.
 Only use this if sv is an
expression with side effects, otherwise use the
 more efficient SvPVX.

	 char*	 SvPVx(SV* sv, STRLEN len)

SvPV_force

Like SvPV but will force the SV into containing just a string
 (SvPOK_only). You want
force if you are going to update the SvPVX
 directly.

	 char*	 SvPV_force(SV* sv, STRLEN len)

SvPV_force_nomg

Like SvPV but will force the SV into containing just a string
 (SvPOK_only). You want
force if you are going to update the SvPVX
 directly. Doesn't process magic.

	 char*	 SvPV_force_nomg(SV* sv, STRLEN len)

SvPV_nolen

Returns a pointer to the string in the SV, or a stringified form of
 the SV if the SV does
not contain a string. The SV may cache the
 stringified form becoming SvPOK. Handles
'get' magic.

	 char*	 SvPV_nolen(SV* sv)

SvPV_nomg

Like SvPV but doesn't process magic.

	 char*	 SvPV_nomg(SV* sv, STRLEN len)

SvPV_set

Set the value of the PV pointer in sv to val. See SvIV_set.

	 void	 SvPV_set(SV* sv, char* val)

SvREFCNT

Returns the value of the object's reference count.

	 U32	 SvREFCNT(SV* sv)

SvREFCNT_dec

Decrements the reference count of the given SV.

	 void	 SvREFCNT_dec(SV* sv)

Perl version 5.10.0 documentation - perlapi

Page 44http://perldoc.perl.org

SvREFCNT_inc

Increments the reference count of the given SV.

All of the following SvREFCNT_inc* macros are optimized versions of
 SvREFCNT_inc,
and can be replaced with SvREFCNT_inc.

	 SV*	 SvREFCNT_inc(SV* sv)

SvREFCNT_inc_NN

Same as SvREFCNT_inc, but can only be used if you know sv
 is not NULL. Since we
don't have to check the NULLness, it's faster
 and smaller.

	 SV*	 SvREFCNT_inc_NN(SV* sv)

SvREFCNT_inc_simple

Same as SvREFCNT_inc, but can only be used with expressions without side
 effects.
Since we don't have to store a temporary value, it's faster.

	 SV*	 SvREFCNT_inc_simple(SV* sv)

SvREFCNT_inc_simple_NN

Same as SvREFCNT_inc_simple, but can only be used if you know sv
 is not NULL.
Since we don't have to check the NULLness, it's faster
 and smaller.

	 SV*	 SvREFCNT_inc_simple_NN(SV* sv)

SvREFCNT_inc_simple_void

Same as SvREFCNT_inc_simple, but can only be used if you don't need the
 return
value. The macro doesn't need to return a meaningful value.

	 void	 SvREFCNT_inc_simple_void(SV* sv)

SvREFCNT_inc_simple_void_NN

Same as SvREFCNT_inc, but can only be used if you don't need the return
 value, and
you know that sv is not NULL. The macro doesn't need
 to return a meaningful value, or
check for NULLness, so it's smaller
 and faster.

	 void	 SvREFCNT_inc_simple_void_NN(SV* sv)

SvREFCNT_inc_void

Same as SvREFCNT_inc, but can only be used if you don't need the
 return value. The
macro doesn't need to return a meaningful value.

	 void	 SvREFCNT_inc_void(SV* sv)

SvREFCNT_inc_void_NN

Same as SvREFCNT_inc, but can only be used if you don't need the return
 value, and
you know that sv is not NULL. The macro doesn't need
 to return a meaningful value, or
check for NULLness, so it's smaller
 and faster.

	 void	 SvREFCNT_inc_void_NN(SV* sv)

SvROK

Tests if the SV is an RV.

	 U32	 SvROK(SV* sv)

Perl version 5.10.0 documentation - perlapi

Page 45http://perldoc.perl.org

SvROK_off

Unsets the RV status of an SV.

	 void	 SvROK_off(SV* sv)

SvROK_on

Tells an SV that it is an RV.

	 void	 SvROK_on(SV* sv)

SvRV

Dereferences an RV to return the SV.

	 SV*	 SvRV(SV* sv)

SvRV_set

Set the value of the RV pointer in sv to val. See SvIV_set.

	 void	 SvRV_set(SV* sv, SV* val)

SvSTASH

Returns the stash of the SV.

	 HV*	 SvSTASH(SV* sv)

SvSTASH_set

Set the value of the STASH pointer in sv to val. See SvIV_set.

	 void	 SvSTASH_set(SV* sv, HV* val)

SvTAINT

Taints an SV if tainting is enabled.

	 void	 SvTAINT(SV* sv)

SvTAINTED

Checks to see if an SV is tainted. Returns TRUE if it is, FALSE if
 not.

	 bool	 SvTAINTED(SV* sv)

SvTAINTED_off

Untaints an SV. Be very careful with this routine, as it short-circuits
 some of Perl's
fundamental security features. XS module authors should not
 use this function unless
they fully understand all the implications of
 unconditionally untainting the value.
Untainting should be done in the
 standard perl fashion, via a carefully crafted regexp,
rather than directly
 untainting variables.

	 void	 SvTAINTED_off(SV* sv)

SvTAINTED_on

Marks an SV as tainted if tainting is enabled.

	 void	 SvTAINTED_on(SV* sv)

SvTRUE

Returns a boolean indicating whether Perl would evaluate the SV as true or
 false,

Perl version 5.10.0 documentation - perlapi

Page 46http://perldoc.perl.org

defined or undefined. Does not handle 'get' magic.

	 bool	 SvTRUE(SV* sv)

SvTYPE

Returns the type of the SV. See svtype.

	 svtype	 SvTYPE(SV* sv)

SvUOK

Returns a boolean indicating whether the SV contains an unsigned integer.

	 bool	 SvUOK(SV* sv)

SvUPGRADE

Used to upgrade an SV to a more complex form. Uses sv_upgrade to
 perform the
upgrade if necessary. See svtype.

	 void	 SvUPGRADE(SV* sv, svtype type)

SvUTF8

Returns a U32 value indicating whether the SV contains UTF-8 encoded data.
 Call this
after SvPV() in case any call to string overloading updates the
 internal flag.

	 U32	 SvUTF8(SV* sv)

SvUTF8_off

Unsets the UTF-8 status of an SV.

	 void	 SvUTF8_off(SV *sv)

SvUTF8_on

Turn on the UTF-8 status of an SV (the data is not changed, just the flag).
 Do not use
frivolously.

	 void	 SvUTF8_on(SV *sv)

SvUV

Coerces the given SV to an unsigned integer and returns it. See SvUVx
 for a version
which guarantees to evaluate sv only once.

	 UV	 SvUV(SV* sv)

SvUVX

Returns the raw value in the SV's UV slot, without checks or conversions.
 Only use
when you are sure SvIOK is true. See also SvUV().

	 UV	 SvUVX(SV* sv)

SvUVx

Coerces the given SV to an unsigned integer and returns it. Guarantees to sv only
once. Only use this if sv is an expression with side effects,
 otherwise use the more
efficient SvUV.

	 UV	 SvUVx(SV* sv)

Perl version 5.10.0 documentation - perlapi

Page 47http://perldoc.perl.org

SvUV_nomg

Like SvUV but doesn't process magic.

	 UV	 SvUV_nomg(SV* sv)

SvUV_set

Set the value of the UV pointer in sv to val. See SvIV_set.

	 void	 SvUV_set(SV* sv, UV val)

SvVOK

Returns a boolean indicating whether the SV contains a v-string.

	 bool	 SvVOK(SV* sv)

sv_catpvn_nomg

Like sv_catpvn but doesn't process magic.

	 void	 sv_catpvn_nomg(SV* sv, const char* ptr, STRLEN len)

sv_catsv_nomg

Like sv_catsv but doesn't process magic.

	 void	 sv_catsv_nomg(SV* dsv, SV* ssv)

sv_derived_from

Returns a boolean indicating whether the SV is derived from the specified class at the
C level. To check derivation at the Perl level, call isa() as a
 normal Perl method.

	 bool	 sv_derived_from(SV* sv, const char* name)

sv_does

Returns a boolean indicating whether the SV performs a specific, named role.
 The SV
can be a Perl object or the name of a Perl class.

	 bool	 sv_does(SV* sv, const char* name)

sv_report_used

Dump the contents of all SVs not yet freed. (Debugging aid).

	 void	 sv_report_used()

sv_setsv_nomg

Like sv_setsv but doesn't process magic.

	 void	 sv_setsv_nomg(SV* dsv, SV* ssv)

SV-Body Allocation
looks_like_number

Test if the content of an SV looks like a number (or is a number). Inf and Infinity
are treated as numbers (so will not issue a
 non-numeric warning), even if your atof()
doesn't grok them.

	 I32	 looks_like_number(SV* sv)

newRV_noinc

Perl version 5.10.0 documentation - perlapi

Page 48http://perldoc.perl.org

Creates an RV wrapper for an SV. The reference count for the original
 SV is not
incremented.

	 SV*	 newRV_noinc(SV* sv)

newSV

Creates a new SV. A non-zero len parameter indicates the number of
 bytes of
preallocated string space the SV should have. An extra byte for a
 trailing NUL is also
reserved. (SvPOK is not set for the SV even if string
 space is allocated.) The reference
count for the new SV is set to 1.

In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
 parameter, x, a
debug aid which allowed callers to identify themselves.
 This aid has been superseded
by a new build option, PERL_MEM_LOG (see "PERL_MEM_LOG" in perlhack). The
older API is still there for use in XS
 modules supporting older perls.

	 SV*	 newSV(STRLEN len)

newSVhek

Creates a new SV from the hash key structure. It will generate scalars that
 point to the
shared string table where possible. Returns a new (undefined)
 SV if the hek is NULL.

	 SV*	 newSVhek(const HEK *hek)

newSViv

Creates a new SV and copies an integer into it. The reference count for the
 SV is set
to 1.

	 SV*	 newSViv(IV i)

newSVnv

Creates a new SV and copies a floating point value into it.
 The reference count for the
SV is set to 1.

	 SV*	 newSVnv(NV n)

newSVpv

Creates a new SV and copies a string into it. The reference count for the
 SV is set to
1. If len is zero, Perl will compute the length using
 strlen(). For efficiency, consider
using newSVpvn instead.

	 SV*	 newSVpv(const char* s, STRLEN len)

newSVpvf

Creates a new SV and initializes it with the string formatted like sprintf.

	 SV*	 newSVpvf(const char* pat, ...)

newSVpvn

Creates a new SV and copies a string into it. The reference count for the
 SV is set to
1. Note that if len is zero, Perl will create a zero length
 string. You are responsible for
ensuring that the source string is at least len bytes long. If the s argument is NULL
the new SV will be undefined.

	 SV*	 newSVpvn(const char* s, STRLEN len)

newSVpvn_share

Perl version 5.10.0 documentation - perlapi

Page 49http://perldoc.perl.org

Creates a new SV with its SvPVX_const pointing to a shared string in the string
 table.
If the string does not already exist in the table, it is created
 first. Turns on READONLY
and FAKE. If the hash parameter is non-zero, that
 value is used; otherwise the hash is
computed. The string's hash can be later
 be retrieved from the SV with the
SvSHARED_HASH() macro. The idea here is
 that as the string table is used for shared
hash keys these strings will have
 SvPVX_const == HeKEY and hash lookup will avoid
string compare.

	 SV*	 newSVpvn_share(const char* s, I32 len, U32 hash)

newSVpvs

Like newSVpvn, but takes a literal string instead of a string/length pair.

	 SV*	 newSVpvs(const char* s)

newSVpvs_share

Like newSVpvn_share, but takes a literal string instead of a string/length
 pair and
omits the hash parameter.

	 SV*	 newSVpvs_share(const char* s)

newSVrv

Creates a new SV for the RV, rv, to point to. If rv is not an RV then
 it will be upgraded
to one. If classname is non-null then the new SV will
 be blessed in the specified
package. The new SV is returned and its
 reference count is 1.

	 SV*	 newSVrv(SV* rv, const char* classname)

newSVsv

Creates a new SV which is an exact duplicate of the original SV.
 (Uses sv_setsv).

	 SV*	 newSVsv(SV* old)

newSVuv

Creates a new SV and copies an unsigned integer into it.
 The reference count for the
SV is set to 1.

	 SV*	 newSVuv(UV u)

newSV_type

Creates a new SV, of the type specified. The reference count for the new SV
 is set to
1.

	 SV*	 newSV_type(svtype type)

sv_2bool

This function is only called on magical items, and is only used by
 sv_true() or its macro
equivalent.

	 bool	 sv_2bool(SV* sv)

sv_2cv

Using various gambits, try to get a CV from an SV; in addition, try if
 possible to set *st
and *gvp to the stash and GV associated with it.
 The flags in lref are passed to
sv_fetchsv.

	 CV*	 sv_2cv(SV* sv, HV** st, GV** gvp, I32 lref)

Perl version 5.10.0 documentation - perlapi

Page 50http://perldoc.perl.org

sv_2io

Using various gambits, try to get an IO from an SV: the IO slot if its a
 GV; or the
recursive result if we're an RV; or the IO slot of the symbol
 named after the PV if we're
a string.

	 IO*	 sv_2io(SV* sv)

sv_2iv_flags

Return the integer value of an SV, doing any necessary string
 conversion. If flags
includes SV_GMAGIC, does an mg_get() first.
 Normally used via the SvIV(sv) and
SvIVx(sv) macros.

	 IV	 sv_2iv_flags(SV* sv, I32 flags)

sv_2mortal

Marks an existing SV as mortal. The SV will be destroyed "soon", either
 by an explicit
call to FREETMPS, or by an implicit call at places such as
 statement boundaries.
SvTEMP() is turned on which means that the SV's
 string buffer can be "stolen" if this
SV is copied. See also sv_newmortal
 and sv_mortalcopy.

	 SV*	 sv_2mortal(SV* sv)

sv_2nv

Return the num value of an SV, doing any necessary string or integer
 conversion,
magic etc. Normally used via the SvNV(sv) and SvNVx(sv)
 macros.

	 NV	 sv_2nv(SV* sv)

sv_2pvbyte

Return a pointer to the byte-encoded representation of the SV, and set *lp
 to its length.
May cause the SV to be downgraded from UTF-8 as a
 side-effect.

Usually accessed via the SvPVbyte macro.

	 char*	 sv_2pvbyte(SV* sv, STRLEN* lp)

sv_2pvutf8

Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
 to its
length. May cause the SV to be upgraded to UTF-8 as a side-effect.

Usually accessed via the SvPVutf8 macro.

	 char*	 sv_2pvutf8(SV* sv, STRLEN* lp)

sv_2pv_flags

Returns a pointer to the string value of an SV, and sets *lp to its length.
 If flags
includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
 if necessary.

Normally invoked via the SvPV_flags macro. sv_2pv() and sv_2pv_nomg
 usually
end up here too.

	 char*	 sv_2pv_flags(SV* sv, STRLEN* lp, I32 flags)

sv_2uv_flags

Return the unsigned integer value of an SV, doing any necessary string
 conversion. If
flags includes SV_GMAGIC, does an mg_get() first.
 Normally used via the SvUV(sv)
and SvUVx(sv) macros.

	 UV	 sv_2uv_flags(SV* sv, I32 flags)

Perl version 5.10.0 documentation - perlapi

Page 51http://perldoc.perl.org

sv_backoff

Remove any string offset. You should normally use the SvOOK_off macro
 wrapper
instead.

	 int	 sv_backoff(SV* sv)

sv_bless

Blesses an SV into a specified package. The SV must be an RV. The package
 must
be designated by its stash (see gv_stashpv()). The reference count
 of the SV is
unaffected.

	 SV*	 sv_bless(SV* sv, HV* stash)

sv_catpv

Concatenates the string onto the end of the string which is in the SV.
 If the SV has the
UTF-8 status set, then the bytes appended should be
 valid UTF-8. Handles 'get'
magic, but not 'set' magic. See sv_catpv_mg.

	 void	 sv_catpv(SV* sv, const char* ptr)

sv_catpvf

Processes its arguments like sprintf and appends the formatted
 output to an SV. If
the appended data contains "wide" characters
 (including, but not limited to, SVs with a
UTF-8 PV formatted with %s,
 and characters >255 formatted with %c), the original SV
might get
 upgraded to UTF-8. Handles 'get' magic, but not 'set' magic. See
sv_catpvf_mg. If the original SV was UTF-8, the pattern should be
 valid UTF-8; if the
original SV was bytes, the pattern should be too.

	 void	 sv_catpvf(SV* sv, const char* pat, ...)

sv_catpvf_mg

Like sv_catpvf, but also handles 'set' magic.

	 void	 sv_catpvf_mg(SV *sv, const char* pat, ...)

sv_catpvn

Concatenates the string onto the end of the string which is in the SV. The len
indicates number of bytes to copy. If the SV has the UTF-8
 status set, then the bytes
appended should be valid UTF-8.
 Handles 'get' magic, but not 'set' magic. See
sv_catpvn_mg.

	 void	 sv_catpvn(SV* sv, const char* ptr, STRLEN len)

sv_catpvn_flags

Concatenates the string onto the end of the string which is in the SV. The len
indicates number of bytes to copy. If the SV has the UTF-8
 status set, then the bytes
appended should be valid UTF-8.
 If flags has SV_GMAGIC bit set, will mg_get on
dsv if
 appropriate, else not. sv_catpvn and sv_catpvn_nomg are implemented
 in
terms of this function.

	 void	 sv_catpvn_flags(SV* sv, const char* ptr, STRLEN len, I32
flags)

sv_catpvs

Like sv_catpvn, but takes a literal string instead of a string/length pair.

Perl version 5.10.0 documentation - perlapi

Page 52http://perldoc.perl.org

	 void	 sv_catpvs(SV* sv, const char* s)

sv_catpv_mg

Like sv_catpv, but also handles 'set' magic.

	 void	 sv_catpv_mg(SV *sv, const char *ptr)

sv_catsv

Concatenates the string from SV ssv onto the end of the string in
 SV dsv. Modifies
dsv but not ssv. Handles 'get' magic, but
 not 'set' magic. See sv_catsv_mg.

	 void	 sv_catsv(SV* dsv, SV* ssv)

sv_catsv_flags

Concatenates the string from SV ssv onto the end of the string in
 SV dsv. Modifies
dsv but not ssv. If flags has SV_GMAGIC
 bit set, will mg_get on the SVs if
appropriate, else not. sv_catsv
 and sv_catsv_nomg are implemented in terms of
this function.

	 void	 sv_catsv_flags(SV* dsv, SV* ssv, I32 flags)

sv_chop

Efficient removal of characters from the beginning of the string buffer.
 SvPOK(sv) must
be true and the ptr must be a pointer to somewhere inside
 the string buffer. The ptr
becomes the first character of the adjusted
 string. Uses the "OOK hack".
 Beware: after
this function returns, ptr and SvPVX_const(sv) may no longer
 refer to the same
chunk of data.

	 void	 sv_chop(SV* sv, const char* ptr)

sv_clear

Clear an SV: call any destructors, free up any memory used by the body,
 and free the
body itself. The SV's head is not freed, although
 its type is set to all 1's so that it won't
inadvertently be assumed
 to be live during global destruction etc.
 This function should
only be called when REFCNT is zero. Most of the time
 you'll want to call sv_free()
(or its macro wrapper SvREFCNT_dec)
 instead.

	 void	 sv_clear(SV* sv)

sv_cmp

Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
 string in
sv1 is less than, equal to, or greater than the string in sv2. Is UTF-8 and 'use bytes'
aware, handles get magic, and will
 coerce its args to strings if necessary. See also
sv_cmp_locale.

	 I32	 sv_cmp(SV* sv1, SV* sv2)

sv_cmp_locale

Compares the strings in two SVs in a locale-aware manner. Is UTF-8 and
 'use bytes'
aware, handles get magic, and will coerce its args to strings
 if necessary. See also
sv_cmp_locale. See also sv_cmp.

	 I32	 sv_cmp_locale(SV* sv1, SV* sv2)

sv_collxfrm

Perl version 5.10.0 documentation - perlapi

Page 53http://perldoc.perl.org

Add Collate Transform magic to an SV if it doesn't already have it.

Any scalar variable may carry PERL_MAGIC_collxfrm magic that contains the
 scalar
data of the variable, but transformed to such a format that a normal
 memory
comparison can be used to compare the data according to the locale
 settings.

	 char*	 sv_collxfrm(SV* sv, STRLEN* nxp)

sv_copypv

Copies a stringified representation of the source SV into the
 destination SV.
Automatically performs any necessary mg_get and
 coercion of numeric values into
strings. Guaranteed to preserve
 UTF8 flag even from overloaded objects. Similar in
nature to
 sv_2pv[_flags] but operates directly on an SV instead of just the
 string.
Mostly uses sv_2pv_flags to do its work, except when that
 would lose the UTF-8'ness
of the PV.

	 void	 sv_copypv(SV* dsv, SV* ssv)

sv_dec

Auto-decrement of the value in the SV, doing string to numeric conversion
 if
necessary. Handles 'get' magic.

	 void	 sv_dec(SV* sv)

sv_eq

Returns a boolean indicating whether the strings in the two SVs are
 identical. Is UTF-8
and 'use bytes' aware, handles get magic, and will
 coerce its args to strings if
necessary.

	 I32	 sv_eq(SV* sv1, SV* sv2)

sv_force_normal_flags

Undo various types of fakery on an SV: if the PV is a shared string, make
 a private
copy; if we're a ref, stop refing; if we're a glob, downgrade to
 an xpvmg; if we're a
copy-on-write scalar, this is the on-write time when
 we do the copy, and is also used
locally. If SV_COW_DROP_PV is set
 then a copy-on-write scalar drops its PV buffer (if
any) and becomes
 SvPOK_off rather than making a copy. (Used where this scalar is
about to be
 set to some other value.) In addition, the flags parameter gets passed to
sv_unref_flags() when unrefing. sv_force_normal calls this function
 with flags
set to 0.

	 void	 sv_force_normal_flags(SV *sv, U32 flags)

sv_free

Decrement an SV's reference count, and if it drops to zero, call sv_clear to invoke
destructors and free up any memory used by
 the body; finally, deallocate the SV's
head itself.
 Normally called via a wrapper macro SvREFCNT_dec.

	 void	 sv_free(SV* sv)

sv_gets

Get a line from the filehandle and store it into the SV, optionally
 appending to the
currently-stored string.

	 char*	 sv_gets(SV* sv, PerlIO* fp, I32 append)

sv_grow

Perl version 5.10.0 documentation - perlapi

Page 54http://perldoc.perl.org

Expands the character buffer in the SV. If necessary, uses sv_unref and
 upgrades
the SV to SVt_PV. Returns a pointer to the character buffer.
 Use the SvGROW wrapper
instead.

	 char*	 sv_grow(SV* sv, STRLEN newlen)

sv_inc

Auto-increment of the value in the SV, doing string to numeric conversion
 if necessary.
Handles 'get' magic.

	 void	 sv_inc(SV* sv)

sv_insert

Inserts a string at the specified offset/length within the SV. Similar to
 the Perl substr()
function.

	 void	 sv_insert(SV* bigsv, STRLEN offset, STRLEN len, const
char* little, STRLEN littlelen)

sv_isa

Returns a boolean indicating whether the SV is blessed into the specified
 class. This
does not check for subtypes; use sv_derived_from to verify
 an inheritance
relationship.

	 int	 sv_isa(SV* sv, const char* name)

sv_isobject

Returns a boolean indicating whether the SV is an RV pointing to a blessed
 object. If
the SV is not an RV, or if the object is not blessed, then this
 will return false.

	 int	 sv_isobject(SV* sv)

sv_len

Returns the length of the string in the SV. Handles magic and type
 coercion. See also
SvCUR, which gives raw access to the xpv_cur slot.

	 STRLEN	 sv_len(SV* sv)

sv_len_utf8

Returns the number of characters in the string in an SV, counting wide
 UTF-8 bytes as
a single character. Handles magic and type coercion.

	 STRLEN	 sv_len_utf8(SV* sv)

sv_magic

Adds magic to an SV. First upgrades sv to type SVt_PVMG if necessary,
 then adds a
new magic item of type how to the head of the magic list.

See sv_magicext (which sv_magic now calls) for a description of the
 handling of
the name and namlen arguments.

You need to use sv_magicext to add magic to SvREADONLY SVs and also
 to add
more than one instance of the same 'how'.

	 void	 sv_magic(SV* sv, SV* obj, int how, const char* name, I32
namlen)

sv_magicext

Perl version 5.10.0 documentation - perlapi

Page 55http://perldoc.perl.org

Adds magic to an SV, upgrading it if necessary. Applies the
 supplied vtable and
returns a pointer to the magic added.

Note that sv_magicext will allow things that sv_magic will not.
 In particular, you can
add magic to SvREADONLY SVs, and add more than
 one instance of the same 'how'.

If namlen is greater than zero then a savepvn copy of name is
 stored, if namlen is
zero then name is stored as-is and - as another
 special case - if (name && namlen
== HEf_SVKEY) then name is assumed
 to contain an SV* and is stored as-is with its
REFCNT incremented.

(This is now used as a subroutine by sv_magic.)

	 MAGIC *	 sv_magicext(SV* sv, SV* obj, int how, const MGVTBL
vtbl, const char name, I32 namlen)

sv_mortalcopy

Creates a new SV which is a copy of the original SV (using sv_setsv).
 The new SV is
marked as mortal. It will be destroyed "soon", either by an
 explicit call to FREETMPS,
or by an implicit call at places such as
 statement boundaries. See also
sv_newmortal and sv_2mortal.

	 SV*	 sv_mortalcopy(SV* oldsv)

sv_newmortal

Creates a new null SV which is mortal. The reference count of the SV is
 set to 1. It will
be destroyed "soon", either by an explicit call to
 FREETMPS, or by an implicit call at
places such as statement boundaries.
 See also sv_mortalcopy and sv_2mortal.

	 SV*	 sv_newmortal()

sv_newref

Increment an SV's reference count. Use the SvREFCNT_inc() wrapper
 instead.

	 SV*	 sv_newref(SV* sv)

sv_pos_b2u

Converts the value pointed to by offsetp from a count of bytes from the
 start of the
string, to a count of the equivalent number of UTF-8 chars.
 Handles magic and type
coercion.

	 void	 sv_pos_b2u(SV* sv, I32* offsetp)

sv_pos_u2b

Converts the value pointed to by offsetp from a count of UTF-8 chars from
 the start of
the string, to a count of the equivalent number of bytes; if
 lenp is non-zero, it does the
same to lenp, but this time starting from
 the offset, rather than from the start of the
string. Handles magic and
 type coercion.

	 void	 sv_pos_u2b(SV* sv, I32* offsetp, I32* lenp)

sv_pvbyten_force

The backend for the SvPVbytex_force macro. Always use the macro instead.

	 char*	 sv_pvbyten_force(SV* sv, STRLEN* lp)

sv_pvn_force

Get a sensible string out of the SV somehow.
 A private implementation of the

Perl version 5.10.0 documentation - perlapi

Page 56http://perldoc.perl.org

SvPV_force macro for compilers which
 can't cope with complex macro expressions.
Always use the macro instead.

	 char*	 sv_pvn_force(SV* sv, STRLEN* lp)

sv_pvn_force_flags

Get a sensible string out of the SV somehow.
 If flags has SV_GMAGIC bit set, will
mg_get on sv if
 appropriate, else not. sv_pvn_force and sv_pvn_force_nomg
are
 implemented in terms of this function.
 You normally want to use the various
wrapper macros instead: see SvPV_force and SvPV_force_nomg

	 char*	 sv_pvn_force_flags(SV* sv, STRLEN* lp, I32 flags)

sv_pvutf8n_force

The backend for the SvPVutf8x_force macro. Always use the macro instead.

	 char*	 sv_pvutf8n_force(SV* sv, STRLEN* lp)

sv_reftype

Returns a string describing what the SV is a reference to.

	 const char*	 sv_reftype(const SV* sv, int ob)

sv_replace

Make the first argument a copy of the second, then delete the original.
 The target SV
physically takes over ownership of the body of the source SV
 and inherits its flags;
however, the target keeps any magic it owns,
 and any magic in the source is
discarded.
 Note that this is a rather specialist SV copying operation; most of the
 time
you'll want to use sv_setsv or one of its many macro front-ends.

	 void	 sv_replace(SV* sv, SV* nsv)

sv_reset

Underlying implementation for the reset Perl function.
 Note that the perl-level
function is vaguely deprecated.

	 void	 sv_reset(const char* s, HV* stash)

sv_rvweaken

Weaken a reference: set the SvWEAKREF flag on this RV; give the
 referred-to SV
PERL_MAGIC_backref magic if it hasn't already; and
 push a back-reference to this
RV onto the array of backreferences
 associated with that magic. If the RV is magical,
set magic will be
 called after the RV is cleared.

	 SV*	 sv_rvweaken(SV *sv)

sv_setiv

Copies an integer into the given SV, upgrading first if necessary.
 Does not handle 'set'
magic. See also sv_setiv_mg.

	 void	 sv_setiv(SV* sv, IV num)

sv_setiv_mg

Like sv_setiv, but also handles 'set' magic.

	 void	 sv_setiv_mg(SV *sv, IV i)

Perl version 5.10.0 documentation - perlapi

Page 57http://perldoc.perl.org

sv_setnv

Copies a double into the given SV, upgrading first if necessary.
 Does not handle 'set'
magic. See also sv_setnv_mg.

	 void	 sv_setnv(SV* sv, NV num)

sv_setnv_mg

Like sv_setnv, but also handles 'set' magic.

	 void	 sv_setnv_mg(SV *sv, NV num)

sv_setpv

Copies a string into an SV. The string must be null-terminated. Does not
 handle 'set'
magic. See sv_setpv_mg.

	 void	 sv_setpv(SV* sv, const char* ptr)

sv_setpvf

Works like sv_catpvf but copies the text into the SV instead of
 appending it. Does
not handle 'set' magic. See sv_setpvf_mg.

	 void	 sv_setpvf(SV* sv, const char* pat, ...)

sv_setpvf_mg

Like sv_setpvf, but also handles 'set' magic.

	 void	 sv_setpvf_mg(SV *sv, const char* pat, ...)

sv_setpviv

Copies an integer into the given SV, also updating its string value.
 Does not handle
'set' magic. See sv_setpviv_mg.

	 void	 sv_setpviv(SV* sv, IV num)

sv_setpviv_mg

Like sv_setpviv, but also handles 'set' magic.

	 void	 sv_setpviv_mg(SV *sv, IV iv)

sv_setpvn

Copies a string into an SV. The len parameter indicates the number of
 bytes to be
copied. If the ptr argument is NULL the SV will become
 undefined. Does not handle
'set' magic. See sv_setpvn_mg.

	 void	 sv_setpvn(SV* sv, const char* ptr, STRLEN len)

sv_setpvn_mg

Like sv_setpvn, but also handles 'set' magic.

	 void	 sv_setpvn_mg(SV *sv, const char *ptr, STRLEN len)

sv_setpvs

Like sv_setpvn, but takes a literal string instead of a string/length pair.

	 void	 sv_setpvs(SV* sv, const char* s)

Perl version 5.10.0 documentation - perlapi

Page 58http://perldoc.perl.org

sv_setpv_mg

Like sv_setpv, but also handles 'set' magic.

	 void	 sv_setpv_mg(SV *sv, const char *ptr)

sv_setref_iv

Copies an integer into a new SV, optionally blessing the SV. The rv
 argument will be
upgraded to an RV. That RV will be modified to point to
 the new SV. The classname
argument indicates the package for the
 blessing. Set classname to NULL to avoid the
blessing. The new SV
 will have a reference count of 1, and the RV will be returned.

	 SV*	 sv_setref_iv(SV* rv, const char* classname, IV iv)

sv_setref_nv

Copies a double into a new SV, optionally blessing the SV. The rv
 argument will be
upgraded to an RV. That RV will be modified to point to
 the new SV. The classname
argument indicates the package for the
 blessing. Set classname to NULL to avoid the
blessing. The new SV
 will have a reference count of 1, and the RV will be returned.

	 SV*	 sv_setref_nv(SV* rv, const char* classname, NV nv)

sv_setref_pv

Copies a pointer into a new SV, optionally blessing the SV. The rv
 argument will be
upgraded to an RV. That RV will be modified to point to
 the new SV. If the pv
argument is NULL then PL_sv_undef will be placed
 into the SV. The classname
argument indicates the package for the
 blessing. Set classname to NULL to avoid the
blessing. The new SV
 will have a reference count of 1, and the RV will be returned.

Do not use with other Perl types such as HV, AV, SV, CV, because those
 objects will
become corrupted by the pointer copy process.

Note that sv_setref_pvn copies the string while this copies the pointer.

	 SV*	 sv_setref_pv(SV* rv, const char* classname, void* pv)

sv_setref_pvn

Copies a string into a new SV, optionally blessing the SV. The length of the
 string must
be specified with n. The rv argument will be upgraded to
 an RV. That RV will be
modified to point to the new SV. The classname
 argument indicates the package for
the blessing. Set classname to NULL to avoid the blessing. The new SV will have a
reference count
 of 1, and the RV will be returned.

Note that sv_setref_pv copies the pointer while this copies the string.

	 SV*	 sv_setref_pvn(SV* rv, const char* classname, const char*
pv, STRLEN n)

sv_setref_uv

Copies an unsigned integer into a new SV, optionally blessing the SV. The rv

argument will be upgraded to an RV. That RV will be modified to point to
 the new SV.
The classname argument indicates the package for the
 blessing. Set classname to
NULL to avoid the blessing. The new SV
 will have a reference count of 1, and the RV
will be returned.

	 SV*	 sv_setref_uv(SV* rv, const char* classname, UV uv)

sv_setsv

Copies the contents of the source SV ssv into the destination SV dsv. The source SV

Perl version 5.10.0 documentation - perlapi

Page 59http://perldoc.perl.org

may be destroyed if it is mortal, so don't use this
 function if the source SV needs to be
reused. Does not handle 'set' magic.
 Loosely speaking, it performs a copy-by-value,
obliterating any previous
 content of the destination.

You probably want to use one of the assortment of wrappers, such as SvSetSV,
SvSetSV_nosteal, SvSetMagicSV and SvSetMagicSV_nosteal.

	 void	 sv_setsv(SV* dsv, SV* ssv)

sv_setsv_flags

Copies the contents of the source SV ssv into the destination SV dsv. The source SV
may be destroyed if it is mortal, so don't use this
 function if the source SV needs to be
reused. Does not handle 'set' magic.
 Loosely speaking, it performs a copy-by-value,
obliterating any previous
 content of the destination.
 If the flags parameter has the
SV_GMAGIC bit set, will mg_get on ssv if appropriate, else not. If the flags
parameter has the NOSTEAL bit set then the buffers of temps will not be stolen.
<sv_setsv>
 and sv_setsv_nomg are implemented in terms of this function.

You probably want to use one of the assortment of wrappers, such as SvSetSV,
SvSetSV_nosteal, SvSetMagicSV and SvSetMagicSV_nosteal.

This is the primary function for copying scalars, and most other
 copy-ish functions and
macros use this underneath.

	 void	 sv_setsv_flags(SV* dsv, SV* ssv, I32 flags)

sv_setsv_mg

Like sv_setsv, but also handles 'set' magic.

	 void	 sv_setsv_mg(SV *dstr, SV *sstr)

sv_setuv

Copies an unsigned integer into the given SV, upgrading first if necessary.
 Does not
handle 'set' magic. See also sv_setuv_mg.

	 void	 sv_setuv(SV* sv, UV num)

sv_setuv_mg

Like sv_setuv, but also handles 'set' magic.

	 void	 sv_setuv_mg(SV *sv, UV u)

sv_tainted

Test an SV for taintedness. Use SvTAINTED instead.
 bool	 sv_tainted(SV* sv)

sv_true

Returns true if the SV has a true value by Perl's rules.
 Use the SvTRUE macro instead,
which may call sv_true() or may
 instead use an in-line version.

	 I32	 sv_true(SV *sv)

sv_unmagic

Removes all magic of type type from an SV.

	 int	 sv_unmagic(SV* sv, int type)

sv_unref_flags

Unsets the RV status of the SV, and decrements the reference count of
 whatever was

Perl version 5.10.0 documentation - perlapi

Page 60http://perldoc.perl.org

being referenced by the RV. This can almost be thought of
 as a reversal of newSVrv.
The cflags argument can contain SV_IMMEDIATE_UNREF to force the reference
count to be decremented
 (otherwise the decrementing is conditional on the reference
count being
 different from one or the reference being a readonly SV).
 See SvROK_off
.

	 void	 sv_unref_flags(SV* sv, U32 flags)

sv_untaint

Untaint an SV. Use SvTAINTED_off instead.
 void	 sv_untaint(SV* sv)

sv_upgrade

Upgrade an SV to a more complex form. Generally adds a new body type to the
 SV,
then copies across as much information as possible from the old body.
 You generally
want to use the SvUPGRADE macro wrapper. See also svtype.

	 void	 sv_upgrade(SV* sv, svtype new_type)

sv_usepvn_flags

Tells an SV to use ptr to find its string value. Normally the
 string is stored inside the
SV but sv_usepvn allows the SV to use an
 outside string. The ptr should point to
memory that was allocated
 by malloc. The string length, len, must be supplied. By
default
 this function will realloc (i.e. move) the memory pointed to by ptr,
 so that
pointer should not be freed or used by the programmer after
 giving it to sv_usepvn,
and neither should any pointers from "behind"
 that pointer (e.g. ptr + 1) be used.

If flags & SV_SMAGIC is true, will call SvSETMAGIC. If flags &

SV_HAS_TRAILING_NUL is true, then ptr[len] must be NUL, and the realloc
 will
be skipped. (i.e. the buffer is actually at least 1 byte longer than len, and already
meets the requirements for storing in SvPVX)

	 void	 sv_usepvn_flags(SV* sv, char* ptr, STRLEN len, U32 flags)

sv_utf8_decode

If the PV of the SV is an octet sequence in UTF-8
 and contains a multiple-byte
character, the SvUTF8 flag is turned on
 so that it looks like a character. If the PV
contains only single-byte
 characters, the SvUTF8 flag stays being off.
 Scans PV for
validity and returns false if the PV is invalid UTF-8.

NOTE: this function is experimental and may change or be
 removed without notice.

	 bool	 sv_utf8_decode(SV *sv)

sv_utf8_downgrade

Attempts to convert the PV of an SV from characters to bytes.
 If the PV contains a
character beyond byte, this conversion will fail;
 in this case, either returns false or, if
fail_ok is not
 true, croaks.

This is not as a general purpose Unicode to byte encoding interface:
 use the Encode
extension for that.

NOTE: this function is experimental and may change or be
 removed without notice.

	 bool	 sv_utf8_downgrade(SV *sv, bool fail_ok)

sv_utf8_encode

Converts the PV of an SV to UTF-8, but then turns the SvUTF8
 flag off so that it looks
like octets again.

Perl version 5.10.0 documentation - perlapi

Page 61http://perldoc.perl.org

	 void	 sv_utf8_encode(SV *sv)

sv_utf8_upgrade

Converts the PV of an SV to its UTF-8-encoded form.
 Forces the SV to string form if it
is not already.
 Always sets the SvUTF8 flag to avoid future validity checks even
 if all
the bytes have hibit clear.

This is not as a general purpose byte encoding to Unicode interface:
 use the Encode
extension for that.

	 STRLEN	 sv_utf8_upgrade(SV *sv)

sv_utf8_upgrade_flags

Converts the PV of an SV to its UTF-8-encoded form.
 Forces the SV to string form if it
is not already.
 Always sets the SvUTF8 flag to avoid future validity checks even
 if all
the bytes have hibit clear. If flags has SV_GMAGIC bit set,
 will mg_get on sv if
appropriate, else not. sv_utf8_upgrade and sv_utf8_upgrade_nomg are
implemented in terms of this function.

This is not as a general purpose byte encoding to Unicode interface:
 use the Encode
extension for that.

	 STRLEN	 sv_utf8_upgrade_flags(SV *sv, I32 flags)

sv_vcatpvf

Processes its arguments like vsprintf and appends the formatted output
 to an SV.
Does not handle 'set' magic. See sv_vcatpvf_mg.

Usually used via its frontend sv_catpvf.

	 void	 sv_vcatpvf(SV* sv, const char* pat, va_list* args)

sv_vcatpvfn

Processes its arguments like vsprintf and appends the formatted output
 to an SV.
Uses an array of SVs if the C style variable argument list is
 missing (NULL). When
running with taint checks enabled, indicates via maybe_tainted if results are
untrustworthy (often due to the use of
 locales).

Usually used via one of its frontends sv_vcatpvf and sv_vcatpvf_mg.

	 void	 sv_vcatpvfn(SV* sv, const char* pat, STRLEN patlen,
va_list* args, SV** svargs, I32 svmax, bool *maybe_tainted)

sv_vcatpvf_mg

Like sv_vcatpvf, but also handles 'set' magic.

Usually used via its frontend sv_catpvf_mg.

	 void	 sv_vcatpvf_mg(SV* sv, const char* pat, va_list* args)

sv_vsetpvf

Works like sv_vcatpvf but copies the text into the SV instead of
 appending it. Does
not handle 'set' magic. See sv_vsetpvf_mg.

Usually used via its frontend sv_setpvf.

	 void	 sv_vsetpvf(SV* sv, const char* pat, va_list* args)

sv_vsetpvfn

Perl version 5.10.0 documentation - perlapi

Page 62http://perldoc.perl.org

Works like sv_vcatpvfn but copies the text into the SV instead of
 appending it.

Usually used via one of its frontends sv_vsetpvf and sv_vsetpvf_mg.

	 void	 sv_vsetpvfn(SV* sv, const char* pat, STRLEN patlen,
va_list* args, SV** svargs, I32 svmax, bool *maybe_tainted)

sv_vsetpvf_mg

Like sv_vsetpvf, but also handles 'set' magic.

Usually used via its frontend sv_setpvf_mg.

	 void	 sv_vsetpvf_mg(SV* sv, const char* pat, va_list* args)

Unicode Support
bytes_from_utf8

Converts a string s of length len from UTF-8 into byte encoding.
 Unlike
utf8_to_bytes but like bytes_to_utf8, returns a pointer to
 the newly-created
string, and updates len to contain the new
 length. Returns the original string if no
conversion occurs, len
 is unchanged. Do nothing if is_utf8 points to 0. Sets
is_utf8 to
 0 if s is converted or contains all 7bit characters.

NOTE: this function is experimental and may change or be
 removed without notice.

	 U8*	 bytes_from_utf8(const U8 *s, STRLEN *len, bool *is_utf8)

bytes_to_utf8

Converts a string s of length len from ASCII into UTF-8 encoding.
 Returns a pointer
to the newly-created string, and sets len to
 reflect the new length.

If you want to convert to UTF-8 from other encodings than ASCII,
 see
sv_recode_to_utf8().

NOTE: this function is experimental and may change or be
 removed without notice.

	 U8*	 bytes_to_utf8(const U8 *s, STRLEN *len)

ibcmp_utf8

Return true if the strings s1 and s2 differ case-insensitively, false
 if not (if they are
equal case-insensitively). If u1 is true, the
 string s1 is assumed to be in
UTF-8-encoded Unicode. If u2 is true,
 the string s2 is assumed to be in
UTF-8-encoded Unicode. If u1 or u2
 are false, the respective string is assumed to be
in native 8-bit
 encoding.

If the pe1 and pe2 are non-NULL, the scanning pointers will be copied
 in there (they
will point at the beginning of the next character).
 If the pointers behind pe1 or pe2 are
non-NULL, they are the end
 pointers beyond which scanning will not continue under
any
 circumstances. If the byte lengths l1 and l2 are non-zero, s1+l1 and
 s2+l2 will be
used as goal end pointers that will also stop the scan,
 and which qualify towards
defining a successful match: all the scans
 that define an explicit length must reach
their goal pointers for
 a match to succeed).

For case-insensitiveness, the "casefolding" of Unicode is used
 instead of
upper/lowercasing both the characters, see

http://www.unicode.org/unicode/reports/tr21/ (Case Mappings).

	 I32	 ibcmp_utf8(const char* a, char **pe1, UV l1, bool u1, const
 char* b, char **pe2, UV l2, bool u2)

is_utf8_char

Perl version 5.10.0 documentation - perlapi

Page 63http://perldoc.perl.org

Tests if some arbitrary number of bytes begins in a valid UTF-8
 character. Note that an
INVARIANT (i.e. ASCII) character is a valid
 UTF-8 character. The actual number of
bytes in the UTF-8 character
 will be returned if it is valid, otherwise 0.

	 STRLEN	 is_utf8_char(const U8 *p)

is_utf8_string

Returns true if first len bytes of the given string form a valid
 UTF-8 string, false
otherwise. Note that 'a valid UTF-8 string' does
 not mean 'a string that contains code
points above 0x7F encoded in UTF-8'
 because a valid ASCII string is a valid UTF-8
string.

See also is_utf8_string_loclen() and is_utf8_string_loc().

	 bool	 is_utf8_string(const U8 *s, STRLEN len)

is_utf8_string_loc

Like is_utf8_string() but stores the location of the failure (in the
 case of "utf8ness
failure") or the location s+len (in the case of
 "utf8ness success") in the ep.

See also is_utf8_string_loclen() and is_utf8_string().

	 bool	 is_utf8_string_loc(const U8 *s, STRLEN len, const U8 **p)

is_utf8_string_loclen

Like is_utf8_string() but stores the location of the failure (in the
 case of "utf8ness
failure") or the location s+len (in the case of
 "utf8ness success") in the ep, and the
number of UTF-8
 encoded characters in the el.

See also is_utf8_string_loc() and is_utf8_string().

	 bool	 is_utf8_string_loclen(const U8 *s, STRLEN len, const U8
**ep, STRLEN *el)

pv_uni_display

Build to the scalar dsv a displayable version of the string spv,
 length len, the
displayable version being at most pvlim bytes long
 (if longer, the rest is truncated and
"..." will be appended).

The flags argument can have UNI_DISPLAY_ISPRINT set to display
 isPRINT()able
characters as themselves, UNI_DISPLAY_BACKSLASH
 to display the \\[nrfta\\] as the
backslashed versions (like '\n')
 (UNI_DISPLAY_BACKSLASH is preferred over
UNI_DISPLAY_ISPRINT for \\).
 UNI_DISPLAY_QQ (and its alias
UNI_DISPLAY_REGEX) have both
 UNI_DISPLAY_BACKSLASH and
UNI_DISPLAY_ISPRINT turned on.

The pointer to the PV of the dsv is returned.

	 char*	 pv_uni_display(SV *dsv, const U8 *spv, STRLEN len, STRLEN
 pvlim, UV flags)

sv_cat_decode

The encoding is assumed to be an Encode object, the PV of the ssv is
 assumed to be
octets in that encoding and decoding the input starts
 from the position which (PV +
*offset) pointed to. The dsv will be
 concatenated the decoded UTF-8 string from ssv.
Decoding will terminate
 when the string tstr appears in decoding output or the input
ends on
 the PV of the ssv. The value which the offset points will be modified
 to the last
input position on the ssv.

Returns TRUE if the terminator was found, else returns FALSE.

Perl version 5.10.0 documentation - perlapi

Page 64http://perldoc.perl.org

	 bool	 sv_cat_decode(SV* dsv, SV *encoding, SV *ssv, int *offset,
 char* tstr, int tlen)

sv_recode_to_utf8

The encoding is assumed to be an Encode object, on entry the PV
 of the sv is
assumed to be octets in that encoding, and the sv
 will be converted into Unicode (and
UTF-8).

If the sv already is UTF-8 (or if it is not POK), or if the encoding
 is not a reference,
nothing is done to the sv. If the encoding is not
 an Encode::XS Encoding object, bad
things will happen.
 (See lib/encoding.pm and Encode).

The PV of the sv is returned.

	 char*	 sv_recode_to_utf8(SV* sv, SV *encoding)

sv_uni_display

Build to the scalar dsv a displayable version of the scalar sv,
 the displayable version
being at most pvlim bytes long
 (if longer, the rest is truncated and "..." will be
appended).

The flags argument is as in pv_uni_display().

The pointer to the PV of the dsv is returned.

	 char*	 sv_uni_display(SV *dsv, SV *ssv, STRLEN pvlim, UV flags)

to_utf8_case

The "p" contains the pointer to the UTF-8 string encoding
 the character that is being
converted.

The "ustrp" is a pointer to the character buffer to put the
 conversion result to. The
"lenp" is a pointer to the length
 of the result.

The "swashp" is a pointer to the swash to use.

Both the special and normal mappings are stored lib/unicore/To/Foo.pl,
 and loaded by
SWASHNEW, using lib/utf8_heavy.pl. The special (usually,
 but not always, a
multicharacter mapping), is tried first.

The "special" is a string like "utf8::ToSpecLower", which means the
 hash
%utf8::ToSpecLower. The access to the hash is through
 Perl_to_utf8_case().

The "normal" is a string like "ToLower" which means the swash
 %utf8::ToLower.

	 UV	 to_utf8_case(const U8 *p, U8* ustrp, STRLEN *lenp, SV
**swashp, const char *normal, const char *special)

to_utf8_fold

Convert the UTF-8 encoded character at p to its foldcase version and
 store that in
UTF-8 in ustrp and its length in bytes in lenp. Note
 that the ustrp needs to be at least
UTF8_MAXBYTES_CASE+1 bytes since the
 foldcase version may be longer than the
original character (up to
 three characters).

The first character of the foldcased version is returned
 (but note, as explained above,
that there may be more.)

	 UV	 to_utf8_fold(const U8 *p, U8* ustrp, STRLEN *lenp)

to_utf8_lower

Convert the UTF-8 encoded character at p to its lowercase version and
 store that in
UTF-8 in ustrp and its length in bytes in lenp. Note
 that the ustrp needs to be at least

Perl version 5.10.0 documentation - perlapi

Page 65http://perldoc.perl.org

UTF8_MAXBYTES_CASE+1 bytes since the
 lowercase version may be longer than
the original character.

The first character of the lowercased version is returned
 (but note, as explained above,
that there may be more.)

	 UV	 to_utf8_lower(const U8 *p, U8* ustrp, STRLEN *lenp)

to_utf8_title

Convert the UTF-8 encoded character at p to its titlecase version and
 store that in
UTF-8 in ustrp and its length in bytes in lenp. Note
 that the ustrp needs to be at least
UTF8_MAXBYTES_CASE+1 bytes since the
 titlecase version may be longer than the
original character.

The first character of the titlecased version is returned
 (but note, as explained above,
that there may be more.)

	 UV	 to_utf8_title(const U8 *p, U8* ustrp, STRLEN *lenp)

to_utf8_upper

Convert the UTF-8 encoded character at p to its uppercase version and
 store that in
UTF-8 in ustrp and its length in bytes in lenp. Note
 that the ustrp needs to be at least
UTF8_MAXBYTES_CASE+1 bytes since
 the uppercase version may be longer than
the original character.

The first character of the uppercased version is returned
 (but note, as explained
above, that there may be more.)

	 UV	 to_utf8_upper(const U8 *p, U8* ustrp, STRLEN *lenp)

utf8n_to_uvchr

flags

Returns the native character value of the first character in the string s
 which is
assumed to be in UTF-8 encoding; retlen will be set to the
 length, in bytes, of that
character.

Allows length and flags to be passed to low level routine.

	 UV	 utf8n_to_uvchr(const U8 *s, STRLEN curlen, STRLEN *retlen,
U32 flags)

utf8n_to_uvuni

Bottom level UTF-8 decode routine.
 Returns the Unicode code point value of the first
character in the string s
 which is assumed to be in UTF-8 encoding and no longer than
curlen; retlen will be set to the length, in bytes, of that character.

If s does not point to a well-formed UTF-8 character, the behaviour
 is dependent on
the value of flags: if it contains UTF8_CHECK_ONLY,
 it is assumed that the caller
will raise a warning, and this function
 will silently just set retlen to -1 and return
zero. If the flags does not contain UTF8_CHECK_ONLY, warnings about

malformations will be given, retlen will be set to the expected
 length of the UTF-8
character in bytes, and zero will be returned.

The flags can also contain various flags to allow deviations from
 the strict UTF-8
encoding (see utf8.h).

Most code should use utf8_to_uvchr() rather than call this directly.

	 UV	 utf8n_to_uvuni(const U8 *s, STRLEN curlen, STRLEN *retlen,
U32 flags)

Perl version 5.10.0 documentation - perlapi

Page 66http://perldoc.perl.org

utf8_distance

Returns the number of UTF-8 characters between the UTF-8 pointers a
 and b.

WARNING: use only if you *know* that the pointers point inside the
 same UTF-8
buffer.

	 IV	 utf8_distance(const U8 *a, const U8 *b)

utf8_hop

Return the UTF-8 pointer s displaced by off characters, either
 forward or backward.

WARNING: do not use the following unless you *know* off is within
 the UTF-8 data
pointed to by s *and* that on entry s is aligned
 on the first byte of character or just
after the last byte of a character.

	 U8*	 utf8_hop(const U8 *s, I32 off)

utf8_length

Return the length of the UTF-8 char encoded string s in characters.
 Stops at e
(inclusive). If e < s or if the scan would end
 up past e, croaks.

	 STRLEN	 utf8_length(const U8* s, const U8 *e)

utf8_to_bytes

Converts a string s of length len from UTF-8 into byte encoding.
 Unlike
bytes_to_utf8, this over-writes the original string, and
 updates len to contain the
new length.
 Returns zero on failure, setting len to -1.

If you need a copy of the string, see bytes_from_utf8.

NOTE: this function is experimental and may change or be
 removed without notice.

	 U8*	 utf8_to_bytes(U8 *s, STRLEN *len)

utf8_to_uvchr

Returns the native character value of the first character in the string s
 which is
assumed to be in UTF-8 encoding; retlen will be set to the
 length, in bytes, of that
character.

If s does not point to a well-formed UTF-8 character, zero is
 returned and retlen is set,
if possible, to -1.

	 UV	 utf8_to_uvchr(const U8 *s, STRLEN *retlen)

utf8_to_uvuni

Returns the Unicode code point of the first character in the string s
 which is assumed
to be in UTF-8 encoding; retlen will be set to the
 length, in bytes, of that character.

This function should only be used when returned UV is considered
 an index into the
Unicode semantic tables (e.g. swashes).

If s does not point to a well-formed UTF-8 character, zero is
 returned and retlen is set,
if possible, to -1.

	 UV	 utf8_to_uvuni(const U8 *s, STRLEN *retlen)

uvchr_to_utf8

Adds the UTF-8 representation of the Native codepoint uv to the end
 of the string d; d
should be have at least UTF8_MAXBYTES+1 free
 bytes available. The return value is
the pointer to the byte after the
 end of the new character. In other words,

Perl version 5.10.0 documentation - perlapi

Page 67http://perldoc.perl.org

 d = uvchr_to_utf8(d, uv);

is the recommended wide native character-aware way of saying

 *(d++) = uv;

	 U8*	 uvchr_to_utf8(U8 *d, UV uv)

uvuni_to_utf8_flags

Adds the UTF-8 representation of the Unicode codepoint uv to the end
 of the string d;
d should be have at least UTF8_MAXBYTES+1 free
 bytes available. The return value is
the pointer to the byte after the
 end of the new character. In other words,

 d = uvuni_to_utf8_flags(d, uv, flags);

or, in most cases,

 d = uvuni_to_utf8(d, uv);

(which is equivalent to)

 d = uvuni_to_utf8_flags(d, uv, 0);

is the recommended Unicode-aware way of saying

 *(d++) = uv;

	 U8*	 uvuni_to_utf8_flags(U8 *d, UV uv, UV flags)

Variables created by xsubpp and xsubpp internal functions
ax

Variable which is setup by xsubpp to indicate the stack base offset,
 used by the ST,
XSprePUSH and XSRETURN macros. The dMARK macro
 must be called prior to setup
the MARK variable.

	 I32	 ax

CLASS

Variable which is setup by xsubpp to indicate the class name for a C++ XS
constructor. This is always a char*. See THIS.

	 char*	 CLASS

dAX

Sets up the ax variable.
 This is usually handled automatically by xsubpp by calling
dXSARGS.

		 dAX;

dAXMARK

Sets up the ax variable and stack marker variable mark.
 This is usually handled
automatically by xsubpp by calling dXSARGS.

		 dAXMARK;

dITEMS

Sets up the items variable.
 This is usually handled automatically by xsubpp by
calling dXSARGS.

Perl version 5.10.0 documentation - perlapi

Page 68http://perldoc.perl.org

		 dITEMS;

dUNDERBAR

Sets up the padoff_du variable for an XSUB that wishes to use UNDERBAR.

		 dUNDERBAR;

dXSARGS

Sets up stack and mark pointers for an XSUB, calling dSP and dMARK.
 Sets up the
ax and items variables by calling dAX and dITEMS.
 This is usually handled
automatically by xsubpp.

		 dXSARGS;

dXSI32

Sets up the ix variable for an XSUB which has aliases. This is usually
 handled
automatically by xsubpp.

		 dXSI32;

items

Variable which is setup by xsubpp to indicate the number of items on the stack. See
"Variable-length Parameter Lists" in perlxs.

	 I32	 items

ix

Variable which is setup by xsubpp to indicate which of an XSUB's aliases was used to
invoke it. See "The ALIAS: Keyword" in perlxs.

	 I32	 ix

newXSproto

Used by xsubpp to hook up XSUBs as Perl subs. Adds Perl prototypes to
 the subs.

RETVAL

Variable which is setup by xsubpp to hold the return value for an XSUB. This is
always the proper type for the XSUB. See "The RETVAL Variable" in perlxs.

	 (whatever)	 RETVAL

ST

Used to access elements on the XSUB's stack.

	 SV*	 ST(int ix)

THIS

Variable which is setup by xsubpp to designate the object in a C++ XSUB. This is
always the proper type for the C++ object. See CLASS and "Using XS With C++" in
perlxs.

	 (whatever)	 THIS

UNDERBAR

The SV* corresponding to the $_ variable. Works even if there
 is a lexical $_ in scope.

Perl version 5.10.0 documentation - perlapi

Page 69http://perldoc.perl.org

XS

Macro to declare an XSUB and its C parameter list. This is handled by xsubpp.

XS_VERSION

The version identifier for an XS module. This is usually
 handled automatically by
ExtUtils::MakeMaker. See XS_VERSION_BOOTCHECK.

XS_VERSION_BOOTCHECK

Macro to verify that a PM module's $VERSION variable matches the XS
 module's
XS_VERSION variable. This is usually handled automatically by xsubpp. See "The
VERSIONCHECK: Keyword" in perlxs.

		 XS_VERSION_BOOTCHECK;

Warning and Dieing
croak

This is the XSUB-writer's interface to Perl's die function.
 Normally call this function the
same way you call the C printf
 function. Calling croak returns control directly to
Perl,
 sidestepping the normal C order of execution. See warn.

If you want to throw an exception object, assign the object to $@ and then pass NULL
to croak():

 errsv = get_sv("@", TRUE);
 sv_setsv(errsv, exception_object);
 croak(NULL);

	 void	 croak(const char* pat, ...)

warn

This is the XSUB-writer's interface to Perl's warn function. Call this
 function the same
way you call the C printf function. See croak.

	 void	 warn(const char* pat, ...)

AUTHORS
Until May 1997, this document was maintained by Jeff Okamoto
 <okamoto@corp.hp.com>. It is now
maintained as part of Perl itself.

With lots of help and suggestions from Dean Roehrich, Malcolm Beattie,
 Andreas Koenig, Paul
Hudson, Ilya Zakharevich, Paul Marquess, Neil
 Bowers, Matthew Green, Tim Bunce, Spider
Boardman, Ulrich Pfeifer,
 Stephen McCamant, and Gurusamy Sarathy.

API Listing originally by Dean Roehrich <roehrich@cray.com>.

Updated to be autogenerated from comments in the source by Benjamin Stuhl.

SEE ALSO
perlguts(1), perlxs(1), perlxstut(1), perlintern(1)

